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Abstract
The objectives of this paper are to determine the factors that influence interannual movements of 
farms between income categories, and to forecast future income categories of farms under several 
different market, climate, and policy scenarios. To achieve these goals, a methodology combining 
the Markov chain model with a partial proportional odds model is proposed. Spanish olive farms 
are taken as an illustrative case study. The results show that the income dynamics of these farms are 
mainly influenced by off-farm uncontrollable factors such as the output prices, the weather condi-
tions, and the policy support. Moreover, farm-, farmer-, and management-specific factors also play 
a relevant role.

Keywords: Farm viability, Farm accountancy data network, Markov chain model, Partial proportional 
odds model, Scenario analysis.

1.  Introduction

Low income is the main factor driving farm 
abandonment (van der Zanden et al., 2017). For 
this reason, ensuring farmers receive a ‘fair’ 
income has been an objective of the European 
Common Agricultural Policy (CAP) since its 
origins in 1957, as a way to maintain produc-
tive activity and guarantee food supply for the 
population, as well as to support the vitality of 
rural areas and encourage the provision of mul-
tiple ecosystem services (Finger and El Benni, 
2021). In fact, “support viable farm income and 
resilience of the agricultural sector across the 
Union to enhance long-term food security and 
agricultural diversity” is the first of the nine spe-
cific objectives set out to guide the design and 

implementation of the CAP during the next pro-
gramming period 2022-2027 (EC, 2018).

Despite this stated objective of the CAP, the 
European Union (EU) has never established any 
norms on what should be understood by a ‘fair’ 
or ‘viable’ income (Hill and Bradley, 2015). This 
lack of specificity means there is no normative 
reference level with which to compare the in-
come actually obtained by European farms. To 
fill this gap, scholars have studied farm income 
in an attempt to establish different reference lev-
els based on objective criteria, applying differ-
ent analytical methodologies (e.g., Vrolijk et al., 
2010; Barnes et al., 2020).

The study of farm income is a recurrent re-
search topic within the agricultural economics 
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literature, especially when periods of difficul-
ty are detected in certain farming subsectors. 
This is the case with the olive sector in Spain, 
which recently experienced an acute market 
crisis caused by a cycle of low olive oil prices 
(2018-2020), negatively impacting farm income 
(MAPA, 2021). This situation sparked large 
protests by olive growers throughout 2019 and 
2020, leading to an intense social and political 
debate in production regions about the current 
role and prospects for olive farming. The high 
volatility of farm income experienced by the ol-
ive sector justifies both its use as an illustrative 
case study and the interest in analysing farm in-
come from a dynamic point of view, assessing 
the factors explaining interannual changes in 
farm income.

Within this framework, the objective of this 
paper is threefold. First, to analyse how olive 
farm income has evolved during the period 
2009-2018, using accounting data from a rep-
resentative sample of Spanish olive farms to 
assess the share of these farms that achieve an 
adequate income level, thus ensuring their via-
bility in the medium-to-long term. Second, to 
determine the structural and socio-economic 
factors explaining the heterogeneity in income 
dynamics of these farms. And third, to estimate 
the effects of several feasible market (changes 
in olive oil prices), production (reduction in ol-
ive yields because of climate change), and pol-
icy (reductions in the CAP support) scenarios 
on their income.

To achieve the abovementioned objectives, 
a farm typology is proposed based on different 
farm income levels. Considering the farm-level 
accounting information provided by the Span-
ish Farm Accountancy Data Network, every 
farm sampled has been classified into an income 
category for each year in the analysed period, 
allowing the modelisation of the dynamics of 
farm income, observing how individual farms 
move between categories across the years. For 
this purpose, the Markov chain model is used. 
This methodological approach has already been 
used in the agricultural economics literature, 
especially in studies focused on farm structural 
change (e.g., Rahelizatovo and Gillespie, 1999; 
Zimmermann and Heckelei, 2012). However, it 

has seldom been used to analyse the dynamics of 
farm income (Phimister et al., 2004; Barnes et 
al., 2015). In fact, this paper adds to the existing 
literature by combining the Markov chain model 
with an ordinal regression (partial proportional 
odds) model for ex-ante policy assessment of 
future market, production, and policy scenari-
os. Moreover, this methodological contribution 
is of interest because the method can be easily 
replicated using the same data source in any oth-
er farming sector and member state within the 
EU, allowing useful comparative studies to be 
carried out (e.g., comparison of the dynamics of 
farm income across olive farms in Spain, Italy, 
and Greece).

2.  Measuring farm income: a typology

2.1.  Data

The analysis of farm income necessarily relies 
on microeconomic data at the farm level, ade-
quately reflecting the heterogeneity of these pro-
duction units in terms of their capacity to gener-
ate revenue and remunerate the inputs employed. 
In this sense, the information provided by the 
Farm Accountancy Data Network (FADN) is 
the best available option in EU countries. For 
the case of Spain, these data are provided by the 
Spanish Farm Accountancy Data Network (Red 
Contable Agraria Nacional, RECAN), the Span-
ish branch of the FADN.

The RECAN annually collects structural, pro-
ductive, economic, and financial information on 
a representative sample of Spanish commercial 
farms. Among the main advantages of using this 
data source are:

1.	 The sampling of farms is carried out by 
quotas according to the EU’s farm typology 
(Regulation (EC) 1242/2008), considering 
the strata established by: a) economic di-
mension, quantified in terms of total standard 
gross margin (SGM) expressed in Euros; b) 
type of farming (TF); and c) Spanish Auton-
omous Communities.

2.	 The sample size of the RECAN annually 
exceeds 8,700 farms. This large size and 
the quota sampling procedure guarantee 
that the sample collected by the accounting 
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network is representative of the population 
of commercial farms in Spain.

3.	 The RECAN data gathering is carried out 
using the methodology applied throughout 
the EU (Regulation (EC) 1217/2009), thus 
contributing to a harmonised source of mi-
croeconomic data on farms at the European 
level. Therefore, the income indicators pro-
posed for this work for Spanish olive farms 
could be replicated for other EU countries 
and other types of farming, enabling com-
parative analyses.

For all these reasons, the RECAN is a suitable 
database for the proposed analysis of the income 
dynamics of Spanish olive farms, allowing a re-
liable approximation of the heterogeneity in this 
agricultural sector.

The only limitation of the RECAN worth men-
tioning is that the population of farms analysed 
is not the whole population of Spanish farms 
(945,024 according to the latest official figures). 
As with all the other national FADN branches, 
the population considered by the RECAN con-
sists only of “commercial” farms; that is, those 
with an annual SGM greater than 8,000 Euros 
(about 430,000 farms in Spain). Nevertheless, it 
should be pointed out that the sample collected 
annually by the RECAN represents a population 
of farms that manages 89% of the farmland in 
Spain (20.6 million hectares) and produces 96% 
of agricultural output at the national level. For 
this reason, the data and results obtained using 
this source are useful for policy analysis.

The analysis carried out was based on the mi-
crodata of the farms classified as the type TF 37 
(specialised olive farms) included in the RECAN 
samples from 2009 to 2018. The size of the annu-
al subsamples of farms belonging to the TF 37 has 
ranged throughout the period analysed between 
224 (in 2009) and 363 (in 2018), with information 
available for a total of 3,156 observations (i.e., to-
tal number of farms for the full ten years).

2.2.  Farm income typology

Many authors (e.g., Vrolijk et al., 2010; Barnes 
et al., 2020) propose assessing farm viability by 
taking several different income levels as referenc-
es or benchmarks. In this paper, we follow this 

approach considering two references to measure 
the viability of olive farms in Spain. These two 
benchmarks are presented below, along with the 
viability indicators derived from them, which 
then allow us to classify the analysed farms ac-
cording to their level of income.

The first income reference to be considered is 
the total opportunity costs incurred by the farm-
er because of the use of all internal resources 
(i.e., factors of production owned by the farm-
er) in his/her farming activities (O’Donoghue 
et al., 2016; Coppola et al., 2020). In the case 
where the farm income is enough to remunerate 
(i.e., higher than) all the opportunity costs for 
the use of the labour, capital, and land factors 
provided by the farmer, it can be said that factor 
allocation is economically efficient, making the 
farming activity viable in the long term. This 
income level would allow the generation of an 
economic surplus that can be reinvested in the 
farm, not only ensuring its economic sustaina-
bility but even enabling its growth.

To operationalise this first reference, a first 
viability indicator (VI1) is proposed as the ratio 
between the Farm Net Income (FNI) and the sum 
of the estimated values of the farmer’s opportu-
nity costs (labour, land, and capital):

(1)

The opportunity costs are estimated by calcu-
lating the potential remuneration that could be 
obtained if the factors of production provided 
by the farmer were used in the best possible al-
ternative:

a)	 Opportunity costs of labour (OClabor). For 
this case study, we valued this cost con-
sidering the average wage in the Spanish 
economy as the reference (EC, 2018). 
Thus, OClabor was obtained at the farm 
level by multiplying this average wage by 
the agricultural work units provided by 
the farmer and his/her family.

b)	 Opportunity costs of owned land (OCland). It 
is assumed that the best alternative use for 
owned land factor is renting it out (Coppo-
la et al., 2020). Thus, this opportunity cost 
was calculated by multiplying the number of 
hectares of owned farmland by the average 

VI1
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rental price paid by farmers in the TF 37 (ol-
ive farming), with the latter data also being 
obtained from the RECAN microdata set.

c)	 Opportunity costs of owned capital (other 
than owned farmland) (OCcapital). Similar 
to previous studies (e.g., Vrolijk et al., 
2010; Coppola et al., 2020), this oppor-
tunity cost was calculated on the basis of 
the interest paid for long-term public debt. 
Thus, OCcapital was obtained by calculating 
the value of the farm equity less the value 
of owned land multiplied by the tax-free 
yield of 10-year government bonds.

The second income reference considered to 
assess the degree of viability of farms is the op-
portunity cost of the labour provided by farmers 
(Argilés, 2001; EC, 2018). Considering OClabor as 
a reference for the farm income, the second of the 
viability indicators (VI2) is defined as follows:

(2)

If the income of a farm is higher than this 
benchmark, it can be affirmed that this farm is 
viable in the short term, insofar as this income is 
a suitable remuneration for the labour provided 
by the farmer, allowing him/her to have a fair 
livelihood, similar to other people working in 
other economic sectors. Conversely, those farms 
with an income below the opportunity cost of 
labour can be considered as non-viable since 
farming is achieved at the cost of undervaluing 
the labour provided by the farmer. Indeed, under 
these circumstances, the farm is economically 
unsustainable in the long run, and the continuity 
of production is only explained by the farmer’s 
lack of labour opportunities.

Taking into account the two abovementioned 
viability indicators, olive farms can be classified 
into three categories. Those farms with VI2 val-
ues lower than or equal to one are considered 
“non-viable” (category 1 −C1− of the viability 
scale). Those farms with VI2 values higher than 
one, but with VI1 values lower than one are con-
sidered “viable in the short term” (category 2 −
C2−of the viability scale). Finally, those farms 
with a value of VI1 greater than or equal to one 
can be qualified as “viable in the long term” (cat-
egory 3 −C3− of the viability scale).

3.  Methodological approach for analysing 
the dynamics of farm income

3.1.  Markov chain approach

Zimmermann et al. (2009) provide a literature 
review of relevant methods for forecasting change 
in the distribution of farm characteristics (i.e., 
number of farms in classes or categories defined 
by a typology). These authors conclude that the 
Markov chain model (MCM) is the most suitable 
approach to analyse the dynamics of farm chang-
es (i.e., movements of farms between categories).

An MCM focused on the dynamics of farms is 
based on three basic elements (Rahelizatovo and 
Gillespie, 1999): a) a farm typology considering 
a finite set of C farm categories; b) the initial 
distribution of farms according to this typolo-
gy, described by the matrix X0 (1×C), where x0

i 
represents the number (or share) of farms in the 
category i in the first period analysed (t=0); and 
c) the stochastic transition probability matrixes 
(TPM) Pt (C×C) showing the probabilities of 
moving between farm categories during the T 
periods considered (t=1,...T).

When the TPM does not change over time, it is 
said the MCM is stationary. However, this is not 
generally the case for economic phenomena such 
as farm income, which is affected by multiple 
exogenous variables (e.g., product prices, input 
costs, production technology, public support, legal 
requirements, etc.). Since changes in these exog-
enous variables impact farm viability, transition 
probabilities are time-varying, leading to a non-sta-
tionary MCM (i.e., different TPMs for each peri-
od t). Accounting for non-stationarity, any change 
process considering an initial farm distribution X0 
and the TPMs Pt can be represented as follows:

(3)

where the matrix XT (1×C) presents the farm dis-
tribution in period T. Thus, this general expres-
sion can be used to forecast the future distribu-
tion of farms among the C categories considered 
when the matrixes Pt structure is known.

Each element pt
ij of the TPM Pt represents the 

probability of a single farm classified in cate-
gory i in period t–1 being classified in catego-
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ry j in period t. These transition probabilities 
also have the following two characteristics: a) 
0≤ pt

ij≤1 for every category i and j, and every 
period t, and b) ∑C

j =1 pt
ij =1 for every category 

i and period t.
It is usually assumed that the movement of 

farms from one farm category to another follows 
a first-order Markov chain; this is, that the prob-
ability of the movement of a farm in period t-1 
to another farm type in period t is independent 
of movement in earlier periods. In these cases, 
the number of farms in category j in period t (nt

j ) 
depends on the number of farms in all farm cat-
egories i in the preceding period (t-1) multiplied 
by their respective transition probabilities pt

ij:

(4)

If microdata are available to account for single 
farm movements between categories for each 
period, transition probabilities pt

ij can be estimat-
ed as follows:

(5)

where mt
ij is the number of farms in category i in 

period t-1 that moved to category j in period t.
Note that transition probabilities obtained us-

ing Equation (5) based on observed data are just 
estimated values of real unknown parameters 
(pt

ij). However, the values recovered by the use 
of the microdata are proven to be the maximum 
likelihood estimators of real transition probabil-
ities (Gourieroux, 2012), allowing their use as 
unbiased values of these parameters for empir-
ical applications.

Moreover, transition probabilities explaining 
the dynamics of farms’ characteristics are func-
tions of a full array of exogenous factors. Most 
of these factors are time-varying, justifying the 
non-stationary MCM. For this reason, an econo-
metric model estimating the effect of these in-
dependent variables on transition probabilities is 
also required:

(6)

where fij is the function of the vector of explanatory 
variables Zt and the matrix of parameters βij which 
relates to the independent variables considered.

Based on this theoretical framework, we 
implement a two-step approach: the first step 
involves calculating the non-stationary transi-
tion probabilities using Equation (5), and the 
second step estimating the influence of the ex-
ogenous variables on these probabilities using 
Equation (6).

3.2.  Factors determining the dynamics  
of farm income

Coppola et al. (2020) and Barnes et al. (2020) 
have recently reviewed the factors affecting the 
income levels and viability of EU farms. They 
highlight the influence of the farmer’s socio-de-
mographic characteristics, the farm’s structur-
al characteristics, and the farmer’s productive 
choices. Moreover, it is also worth pointing out 
the role of off-farm uncontrollable factors in 
farms’ income dynamics, notably those relat-
ed to the volatility of agricultural markets and 
changing weather conditions (e.g., Poon and 
Weersink, 2011) and those linked to shifting ag-
ricultural policy instruments (e.g., Biagini et al., 
2020; Cardone et al., 2021). Taking into account 
this evidence and the information available for 
the empirical analysis, four kinds of factors were 
considered as explanatory variables that may po-
tentially shape the functions fij (i.e., influence the 
dynamics of olive farm income):

1.	 Farmer’s socio-demographic characteris-
tics: age (AGE), agricultural training (AG-
TRAIN), family labour (FAMLAB), and 
land ownership (LANDOWN).

2.	 Farm’s structural characteristics (econo-
mies of scale, agronomic suitability): farm 
size (FSIZE), agronomic suitability for ol-
ive production (AGSUIT), and olive area 
under irrigation (IRRIG).

3.	 Farmer’s productive choices (production 
technology and financial situation): spe-
cialisation in olive production (SPEC), in-
termediate consumption intensity (ICINT), 
capital intensity (CAPINT), outsourcing 
(OUTSOUR), and debt-equity ratio (DE-
BEQRAT).

4.	 Off-farm uncontrollable factors (market, cli-
matic, and policy conditions): a) bulk olive 
oil price (OPRICE), b) annual weather con-
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ditions accounting for precipitation and tem-
perature differences impacting olive yields 
(WEATHER), c) CAP decoupled payments 
(CAPDP), and d) interest rate (IRATE).

Table 1 shows the details about how these 
variables are operationally defined, the units of 
measurement, and the sources of the data. Table 
2 shows the descriptive statistics of the explana-
tory variables included in the analysis.

The regression models estimated (see next sec-
tion) do not include the variables IRATE (interest 
rate) and IRRIG (olive area under irrigation) be-
cause of multicollinearity problems. Specifically, 
IRATE presented a high correlation with OPRICE, 
while IRRIG was collinear with AGSUIT and 
ICINT. Although several alternative regression 
models were proposed to overcome the multicol-
linearity problems, we opted for those that elim-

Table 1 - Potential explanatory variables of the dynamics of olive farm income.

Theoretical 
concept Variable Acronym Type of 

variable Measurement Units Source

Farmer’s 
socio-
demographic 
characteristics

Age AGE Farm Age Years RECAN

Agricultural 
training AGTRAIN Farm

Dummy variable: only 
practical experience (0); 
agricultural degree (1)

--- RECAN

Family labour FAMLAB Farm Family labour as a percentage 
of total farm labour Percentage RECAN

Land ownership LANDOWN Farm Owned land as a percentage 
of total farmland Percentage RECAN

Farm’s 
structural 
characteristics

Farm size FSIZE Farm Farm size Hectares RECAN
Agronomic 
suitability for 
olive production

AGSUIT Farm
Average olive yield 2009-2018 
as a time-invariant factor 
measuring land productivity

kg olive oil/ 
hectare RECAN

Olive area under 
irrigation IRRIG Farm

Irrigated olive area as a 
percentage of the total olive 
area

Percentage RECAN

Farmer’s 
productive 
choices

Specialization in 
olive production SPEC Farm Olive area as a percentage  

of total farmland Percentage RECAN

Intermediate 
consumption 
intensity

ICINT Farm

Value of intermediate 
consumption (fertilizers, 
phytosanitary products, fuel, 
etc.) per hectare

€/hectare RECAN

Capital intensity CAPINT Farm Non-land assets per hectare €/hectare RECAN

Outsourcing OUTSOUR Farm Agricultural practices 
subcontracted over total costs Percentage RECAN

Debt-equity ratio DEBEQRAT Farm Total debt over equity Percentage RECAN

Off-farm 
uncontrollable 
factors 
(climatic, 
market, 
and policy 
conditions)

Bulk olive oil 
price OPRICE National

Olive oil price index based on 
the average bulk olive oil price 
in Spain 2009-2018=100%

Percentage

Spanish 
Ministry of 
Agriculture 
(MAPA)

Annual weather 
conditions WEATHER Province

Province yield index based on 
the average yield for rain-fed 
olive 2009-2018=100%

Percentage

Spanish 
Ministry of 
Agriculture 
(MAPA)

CAP decoupled 
payments CAPDP Farm CAP decoupled payments  

per hectare €/hectare RECAN

Interest rate IRATE National Spanish Government 10Y 
Bond yield Percentage

Spanish 
Ministry of 
Finance

Note: Monetary variables were deflated using the Spanish Consumer Price Index (CPI) (Instituto Nacional de 
Estadística, INE, www.ine.es).

http://www.ine.es
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inate IRATE and IRRIG since they had the best 
goodness-of-fit statistics and predictive power.

3.3.  Partial proportional odds model

Different regression techniques have been 
used to estimate functions fij included in Equa-
tion (6): least squared procedures, multinom-
inal logit, and ordinal regression models (e.g., 
Rahelizatovo and Gillespie, 1999; Zimmermann 
and Heckelei, 2012). Since the income level of 
olive farms in our case study is ranked from the 
least viable category (i.e., “non-viable”, C1) to 
the most viable category (i.e., “viable in the long 
term”, C3), the dynamics of farm income can 
be modelled using an ordinal regression model 
where the farm income category is considered as 
the dependent variable (y).

Among the different regression models for 
ordinal responses, the ordinal regression model 

is the most traditional. However, this model re-
quires the proportional odds or the ‘parallel lines’ 
assumption, i.e., the effects of independent var-
iables or beta coefficients are equal at different 
thresholds (categories) of the dependent variable. 
This assumption is often violated in the sense that 
one or more coefficients can differ across values 
of y. To solve this problem, Peterson and Harrell 
(1990) proposed the partial proportional odds 
model (PPOM), where the parallel lines assump-
tion can be relaxed for a subset of explanatory 
variables in the model. This means the PPOM 
contains the proportional odds for independent 
variables that do not violate this assumption, but 
estimates additional coefficients for those predic-
tors which do not fulfil it. This model provides 
a more accurate estimation than other available 
modelling techniques (e.g., multinomial logistic 
model) given that not all the independent varia-
bles have to violate the parallel lines assumption.

Table 2 - Descriptive statistics of explanatory variables of the dynamics of olive farm income.

Variable Acronym Average St. Dev. Skewness Kurtosis

Age AGE 58.38 10.91 0.103 0.430

Agricultural training AGTRAIN 0.11 0.32 2.462 4.064

Family labour FAMLAB 62.40% 25.56% -0.305 -0.604

Land ownership LANDOWN 87.08% 28.24% -2.220 3.652

Farm size FSIZE 39.50 59.44 6.723 64.007

Agronomic suitability for olive production AGSUIT 668.09 384.66 1.894 12.043

Olive area under irrigation IRRIG 28.75% 41.61% 0.939 -0.941

Specialization in olive production SPEC 93.25% 14.56% -2.386 5.317

Intermediate consumption intensity ICINT 584.21 410.13 1.452 2.649

Capital intensity CAPINT 3,998.92 5,322.31 9.713 134.594

Outsourcing OUTSOUR 4.65% 9.53% 2.660 7.755

Debt-equity ratio DEBEQRAT 1.47% 24.43% 34.638 1,410.547

Bulk olive oil price OPRICE 105.93% 24.25% 0.169 -1.189

Annual weather conditions WEATHER 102.20% 36.66% 0.362 1.695

CAP decoupled payments CAPDP 544.93 433.34 1.630 5.075

Interest rate IRATE 4.14% 0.54% -0.369 -1.394

Note: The descriptive statistics reported have been calculated using the 3,156 observations gathered by the RE-
CAN subsamples for the TF 37 (specialized olive farms) from 2009 to 2018. However, it is worth noting that the 
subsample size for this type of farming has not remained constant throughout the period analysed; it has gradually 
increased from 224 farms in the year 2009 to 363 farms in the year 2018. This explains why the averages of the 
variables WEATHER or OPRICE are not equal to 100% as might be expected. In these cases, mean values slight-
ly higher than 100% actually indicate that olive yields and prices for olive oil were higher during the last years 
considered (those with larger sample size) than over the first years analysed (those with smaller sample size).
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The PPOM can be written as:

(7)

where m is an ordered response category (3 lev-
els in our empirical study), x and ω are vectors 
of explanatory variables which meet/do not meet 
the proportional odds assumption, respectively, 
β is a vector of unknown regression coefficients 
corresponding to x, ηm a vector of coefficients 
corresponding to ω that vary across cutpoint 
equations and, finally, τm the vector of thresh-
olds or cut points for each category of y.

Therefore, in the empirical study carried out, 
three ordinal regression models were fitted tak-
ing each one of the income categories in turn as 
the dependent variable, and Brant tests (Brant, 
1990) were conducted to test the proportional 
odds assumption for the models as a whole and 
for each of the explanatory variables. This test 
compares the β coefficients from m-1 binary log-
its; the null hypothesis is that these coefficients 
are equal for all logit models. Therefore, when 
the null hypothesis is rejected, it means that the 
β coefficient is violating the parallel assumption 
and different coefficients should be estimated for 
each category. The results of these tests showed 
that a subset of explanatory variables did not ful-
fil the parallel assumption in every model run, 
indicating the suitability of the PPOM proposed 
as the regression technique.

Subsequently, a PPOM was estimated for each 
dependent variable using the gologit2 command 
by Williams (2006) in Stata 14.0 software speci-
fying the autofit option. This prompts the golog-
it2 command to go through an iterative process, 
running a series of Wald tests on each independ-
ent variable to check if their coefficients are dif-
ferent across equations. The final model imposes 
constraints on variables that do not violate the 
proportional odds to keep the same coefficient 
estimate, while the rest are unconstrained and 
show different values for each equation.

By estimating these three PPOMs, we seek 
to determine the explanatory factors of the in-
come dynamics of the olive farms included in 
categories C1 (“non-viable”), C2 (“viable in 
the short term”), and C3 (“viable in the long 

term”). Each model presents two panels repre-
senting the probability of staying in the same 
category or changing to a different (lower or 
higher) one. Stata selects C3 as the reference 
category, which means that current and lower 
categories (C1, and C1 and C2 in the first and 
the second panels, respectively) are taken as the 
base group and then compared to the more via-
ble groups (C2 and C3, and C3 in the first and 
the second panels, respectively).

3.4.  Scenario analysis

The MCM approach can also be used for 
ex-ante policy assessment, allowing compre-
hensive and valid forecasts of future shares of 
farms included in each income category under 
different relevant scenarios (Zimmermann et 
al., 2009). In this regard, the scenario analysis 
performed here is focused on the off-farm un-
controllable factors to evaluate how market, 
climatic, and policy conditions could impact the 
viability of olive farms.

The BASELINE scenario for the analysis 
proposed is defined by the current olive farms’ 
structure, as described in the last available 
RECAN subsample for the TF 37 (data gath-
ered in the year 2018), considering average 
market and climatic conditions for 2009-2018 
(i.e., OPRICE=100%, WEATHER=100%, and 
IRATE=4.24%) and the latest data on policy 
support (i.e., CAPDP=farms’ specific CAP pay-
ments in 2018). Assuming that farms’ structure 
remains constant, the following three off-farm 
uncontrollable variables have been considered 
key for the definition of the scenarios to be ana-
lysed: OPRICE, WEATHER, and CAPDP.

Olive oil prices in the international markets 
are determined by the laws of supply and de-
mand, but they are also affected by factors such 
as speculative activity in the market, informa-
tion asymmetry, currency fluctuations, and gov-
ernment policies (Mili and Bouhaddane, 2021). 
Interannual imbalances between global olive oil 
production (affected by events related to weath-
er, pests, and diseases) and demand (influenced 
by changes in the prices of other substitute veg-
etable fats), along with other factors shaping the 
market, lead to a high interannual (between crop 
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years) price volatility (Abid and Kaffel, 2018). 
This volatility has meant the olive oil sector in 
Spain (and elsewhere) has experienced recurrent 
boom and bust cycles in producer prices, which 
has jeopardised olive farms’ income stability 
and viability (Gontijo et al., 2020). Moreover, 
there is no consensus about expected future 
trends in the price of olive oil since both pro-
duction and demand are rising worldwide, and 
it is not clear which will be the dominant driv-
er (Mili and Bouhaddane, 2019). This explains 
why price volatility has been a major concern 
for policymakers and justifies the inclusion of 
OPRICE as a key variable to define policy-rel-
evant scenarios.

Over the decade analysed (2009-2018), olive 
oil prices in Spain ranged from €1.84 to €3.71/kg 
(average €2.58/kg). For this reason, two feasible 
price scenarios are considered. First, supposing 
that an increase in world production (modern 
high-density and super-high-density groves) 
would lead to a downward trend in prices, an 
average price of €2.00/kg is proposed (scenario 
OP_2EUR), with the variable OPRICE taking 
the value of 77.67%. Second, if increasing de-
mand were to be the dominant driver, a scenario 
of rising prices is also suggested, considering an 
average price of €3.00/kg (scenario OP_3EUR), 
where OPRICE would be equal to 116.51%.

The temperatures that regulate olive tree phe-
nology (dormancy period, flowering, and fruit 
maturation) and the precipitation that determines 
water availability for olive trees grown under 
rainfed conditions (69.9% in Spain) are consid-
ered the most important climatic factors condi-
tioning olive yields (Fraga et al., 2021). Thus, in-
terannual variations in local weather conditions 
affect olive yields, both directly (depending on 
extreme events such as frosts or heatwaves) and 
indirectly (by influencing the incidence of pests 
and diseases), thereby determining olive farms’ 
revenue and income. Wide interannual fluctua-
tions in temperature and rainfall, and thus large 
variations in olive oil production, are distinctive 
features of the Mediterranean climate. Howev-
er, according to the Intergovernmental Panel on 
Climate Change, future climate projections point 
to the Mediterranean Basin as a climate change 
“hotspot”, where temperatures will continue to 

rise and precipitation patterns will shift (IPCC, 
2015). These warming (meaning higher evap-
otranspiration and water demand) and drying 
(i.e., less water availability) trends are expect-
ed to strongly affect olive yields in Spain and 
all other Mediterranean countries (Arenas-Cas-
tro et al., 2020; Cabezas et al., 2021). For the 
Spanish case, a substantial decrease is projected 
in rainfed olive yields (down by 45%) (Fraga 
et al., 2020). This evidence leads us to consid-
er WEATHER as another key variable to define 
future scenarios. Thus, we analyse scenarios in 
which rainfed olive yields will be reduced by 
20% (scenario YIELD-20%, where WEATH-
ER=80%) and 40% (scenario YIELD-40%, 
where WEATHER=60%). The former scenario 
assumes technology innovation and adaptation 
measures will be able to minimise the negative 
effects of climate change, while the latter as-
sumes such strategies will not be implemented.

Farm incomes in the EU have traditionally 
benefited from strong public support through 
the CAP. In the case of Spanish olive farming, 
the estimated Producer Subsidy Equivalent 
(PSE, an indicator measuring total monetary 
transfers to agricultural producers) reaches, on 
average, 42% of the gross olive producer rev-
enues (Júdez et al., 2017). Most of this public 
support for olive growers is received through 
decoupled payments per hectare, set based on 
past references (historical model). As a result, 
the average Spanish olive grower currently re-
ceives far more in CAP payments (€475.44/
ha, RECAN, 2020) than the average Spanish 
farmer (€266.84/ha, RECAN, 2020). Howev-
er, the new CAP reform has introduced updat-
ed regulations aimed at ensuring more equi-
table support for all European farmers. The 
required convergence in decoupled payments 
will lead to a reduction in the value of pay-
ment entitlements that exceed the national av-
erage, as is the case of olive growers (Chousou 
et al., 2020). This likely reduction in the level 
of support will also negatively impact olive 
farms’ income, which justifies the selection of 
CAPDP as another key variable worth consid-
ering when defining policy-relevant scenarios. 
Thus, a scenario involving a 30% reduction 
in these payments for all olive farms is pro-
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posed (scenario CAP-30%, where CAPDP is 
calculated for each farm as 70% of the CAP 
payments received in 2018). Additionally, 
taking into account that the reductions in de-
coupled payments will be targeted on the basis 
of farm size (i.e., the introduction of the new 
redistributive payment for the first hectares), 
another CAP scenario is suggested in which 
there is a 50% reduction in CAP support, but 
with this cut only being implemented after the 
first 10 of the hectares for which the farmer is 
entitled to receive payments (scenario CAP-
50%+10HA, where CAPDP is calculated for 
each farm depending on the CAP payments 
received in 2018 and its size).

The scenarios proposed above are illustrative 
of the versatility of MCM for ex-ante policy 
analysis. In fact, as the reader might suppose, 
any other scenario affecting the variables ex-
plaining olive farm income dynamics could be 
defined for future predictions.

Considering the values of the explanatory vari-
ables for the base year (t=k, the year 2018 in our 
case study) in each scenario, the PPOM (Equa-
tion (7)) to be estimated can be used to predict 
the probability of the movement of each farm be-
tween income categories (p̂t

ij). These predictions 
give us the TPMs Pt for each scenario, and thus 
farm distribution among categories for the next 
year (t=k+1, the year 2019 in our case study):

(8)

However, this kind of prediction for the next 
year is not very useful since the results ob-
tained would be out of date by the time they 
are calculated, and they do not reflect the actual 
impact of the scenarios considered, since these 
results for the k+1 period are highly depend-
ent on the initial farm distribution (Xk). For this 
reason, it is worth assuming that the variables 
defining the scenarios will remain constant for 
the next m years, until the farm distribution be-
came stationary; that is, when the distribution 
Xt remains constant for any t ≥ k + m:

(9)

As the stationary distribution X k+m does not 
depend on the initial distribution X k, it reflects 
the actual impact on farm income of the sce-
nario considered. The scenario analysis is thus 
aimed at calculating and analysing the station-
ary distributions for each scenario, allowing 
us to assess the impact of the proposed chang-
es in the different off-farm uncontrollable 
factors on the near future viability of Spanish 
olive farms.

Finally, note that caution should be taken 
when comparing the stationary distribution un-
der the BASELINE scenario with those resulting 
from the different policy scenarios proposed. It 
is worth recalling that the latter results do not 
take into account possible responses of olive 
growers to the scenario changes in terms of their 
income and cost structure (farms’ structure is 
assumed to remain constant). Despite this short-
coming, these comparative analyses are useful 
for exploring the primary effects of the three 
factors studied on the viability of the farms ana-
lysed (Vrolijk et al., 2010).

4.  Results and discussion

4.1.  The dynamics of olive farm income: 
transition probabilities

The RECAN annually collects data from 
a rotating panel of farms. As shown in Table 
3, for the case of the TF 37, olive farms re-
main in the RECAN panel for varying lengths 
of time. In fact, only 111 out of the 576 olive 
farms sampled from 2009 to 2018 have re-
mained in the TF 37 annual subsamples for the 
whole period. In any case, the 3,156 observa-
tions collected in the TF 37 annual subsamples 
throughout this decade yield 2,555 interannual 
observations (i.e., single farms sampled in two 
consecutive years) to analyse the dynamics of 
farm income. These interannual observations 
make it possible to account for single farm 
movements between farm income categories 
from year t-1 to year t (mt

ij) and regress the 
corresponding transition probabilities (p t

ij) as 
ordinal dependent variables with the set of 
independent variables proposed (Z t) using the 
PPOM approach, as explained in Equation (7).
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Using the data from this unbalanced panel of 
farms could lead to some attrition bias as olive 
growers voluntarily leaving the RECAN sample 
cannot be controlled for, and their replacement 
could generate some sampling noise. Howev-
er, as pointed out by Barnes et al. (2015), this 
bias is found to be low since the average farm 
remains in the sample for a reasonable length of 
time (70% of olive farms remain in the RECAN 
sample for 4 years or more). Thus, interannual 
observations obtained as explained above can 

be judged suitable enough for implementing the 
microdata MCM approach proposed.

Figure 1 shows the proportions of the olive 
farms included in the empirical analysis (i.e., 
those with interannual observations available; 
n=2,555) classified as “non-viable” (C1), “via-
ble in the short term” (C2), and “viable in the 
long term” (C3) from 2009 to 2018. As expected, 
these shares fluctuate over the course of the dec-
ade under analysis. For instance, the proportion 
of “viable in the long term” farms ranges from 

Table 3 - Farms included in the TF 37 (specialized olive farms) subsamples from 2009 to 2018.

Consecutive years 
in the subsample Num. of farms % farms Num. annual 

observations
Num. interannual 

observations
1 84 14.6% 109 0
2 35 6.1% 70 35
3 58 10.1% 174 116
4 81 14.1% 324 243
5 33 5.7% 165 132
6 31 5.4% 186 155
7 131 22.7% 917 786
8 7 1.2% 56 49
9 5 0.9% 45 40
10 111 19.3% 1,110 999

Total 576 100.0% 3,156 2,555

Figure 1 - Distribution of farms among farm income categories from 2009 to 2018.
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51.1% in 2017 to only 14.2% in 2009, while the 
share of “non-viable” farms varies from 77.0% 
in 2009 to 33.4% in 2017. As will be analysed 
in the next section, these fluctuations can be 
explained by off-farm uncontrollable factors af-
fecting olive oil price (market conditions) or ol-
ive yields (weather conditions), and also by farm 
factors such as farm size, production technology, 
or the farmer’s management skills.

Taking the three income categories proposed, 
the MCM approach was implemented by shap-
ing the TPMs Pt as follows:

(10)

Available RECAN microdata allow the calcu-
lation of the maximum likelihood estimators of 
non-stationary transition probabilities p ̂ tij on an 
annual basis following Equation (5). Thus, con-
sidering the initial farm distribution X0 (related to 
the year 2009), and the TPMs Pt from t=1 (year 
2010) to t=9 (year 2018), the final farm distri-
bution X9 (the year 2018) can be expressed using 
Equation (3) as follows: X0×P1×P2×...×P9=X9.

Table 4 shows the average transition prob-
abilities over time for the period analysed (the 
diagonal is shaded), along with the correspond-
ing standard deviations. Transition probabilities 
show both high variability across categories and 
high variability over time.

The highest values in Table 4 are found on 
the diagonal (except for C2) and represent the 

probabilities of remaining in the same income 
category as in the year before. In other words, 
viable (non-viable) farms tend to remain viable 
(non-viable) in the following year. This pattern 
is widely seen in TPMs representing economic 
phenomena, and in our case study indicates that 
single farms ‘resist’ transitioning to other cate-
gories. This could be explained by the fact that 
their income level is strongly influenced by the 
structural features of olive farms (olive growing 
is based on a perennial crop for which it is hard 
to make changes in production technology in the 
short term). These results also suggest transi-
tions of olive farms between income categories 
are mainly caused by off-farm uncontrollable 
factors, such as the price of olive oil, weather 
conditions determining olive yields, and CAP 
payments. In any case, these hypotheses will be 
tested in the next section.

The income category C2 is the exception (ag-
gregated p ̂ tC2, C2=22.4%, while aggregated p ̂ tC2, 

C1 and p ̂ tC2, C3 are higher than 30%), which can 
be explained by the relative ‘narrowness’ of 
this category (i.e., the short-range of farm in-
come defining the requirements for inclusion in 
this category: PI1<1 and PI2>1). In fact, only 
14.5% of the interannual observations taken 
into account (371 out of 2,555) are considered 
“viable in the short term” in the year t-1. This 
means that even small changes in the variables 
determining the dynamics of farm income lead 
“viable in the short term” farms to transition to 
another income category. Furthermore, this sit-
uation also explains why probabilities adjacent 
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Table 4 - Transition probabilities (pt
ij) and standard deviations over time.

Profitability category 
in year t-1

Profitability category 
in year t C1 C2 C3

C1: Non-viable
Average 71.6% 14.0% 14.5%
St. Dev. 0.084 0.053 0.056
Num. observations 1,010 197 201

C2: Viable in the short term
Average 42.8% 22.4% 34.7%
St. Dev. 0.216 0.091 0.148
Num. observations 160 85 126

C3: Viable in the long term
Average 22.2% 16.8% 61.0%
St. Dev. 0.216 0.091 0.148
Num. observations 195 117 464
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to the diagonal (i.e., indicating the relative fre-
quency of transition to neighbouring categories) 
are not higher than those farther away from the 
diagonal (i.e., indicating the relative frequency 
of transition from C1 to C3 or C3 to C1), as is 
usually found in TPMs.

4.2.  Partial proportional odds models

Table 5 displays the coefficients (β) and odds 
ratio (OR) estimates for the independent vari-
ables considered for each of the three estimated 
PPOMs (section 3.3).

Goodness-of-fit statistics are also reported 
for the three models, showing good values for 
all these measures. The LR χ2 test allows us to 
reject the null hypothesis that the performance 
of the estimated model is similar to a null model 
with only the intercept, thus indicating the over-
all estimated model is statistically significant. 
McFadden’s pseudo R2 (or LR index) ranges 
between 19.7% and 22.9%. The count statistic, 
which reports the proportion of correct predic-
tions, fluctuates between 60.3% (model C2 has 
the worst predictive potential) and 73.6-73.5% 
for models C1 and C3, respectively. These val-
ues both for McFadden’s R2 and Count can be 
considered fairly high when compared with 
other papers that also use PPOM regressions 
(O’Connell and Liu, 2011). Finally, Log-like-
lihood at zero and at convergence, as well as 
Akaike (AIC) and Bayesian information criteri-
on (BIC), are statistics used to compare models. 
All these statistics (except for LL at zero, which 
logically stays the same) present better results 
here than in the initial ordinal logit regression 
models, confirming that the PPOM provides a 
more robust estimation.

When interpreting the results of each panel in 
Table 5, the coefficients are equivalent to those 
of a binary logit model where categories 1 to m 
are coded as zero (as the base group) and cate-
gories m+1 to M are coded as one. Positive co-
efficients or odds ratios greater than one mean 
that higher values of an explanatory variable 
increase the probability of a farm moving to a 
higher category than the current one. Negative 
coefficients or odds ratios lower than one imply 
that the higher the value of the independent vari-

able, the higher the probability of the farm stay-
ing in the current category or moving to a lower 
one (Williams, 2006).

According to the PPOM estimates, the varia-
bles OPRICE, WEATHER, CAPDP, and OUT-
SOUR, all of which have positive and statisti-
cally significant coefficients (i.e., odds ratios 
significantly above unity) in the three models, 
are factors that have a positive impact on olive 
farm income. That is, higher values of these var-
iables (i.e., good weather conditions, high pric-
es for olive oil, high CAP decoupled payments, 
and a large share of agricultural practices sub-
contracted) imply an increase in the probability 
of moving from categories C1 or C2 to the most 
viable category, C3, or simply staying in the lat-
ter. On the other hand, the variables ICINT and 
FAMLAB are also significant in all models, but 
their coefficients are negative (i.e., odds ratio 
significantly below one). This means a higher 
probability of the farm moving to a worse in-
come category for higher values in these vari-
ables (i.e., intensive use of intermediate con-
sumption inputs and family labour representing 
a high percentage of total farm labour).

Some independent variables do not have fixed 
coefficients in the two panels for each mod-
el: SPEC, AGSUIT, CAPINT, and LANDOWN 
in model C1; SPEC, AGSUIT, and CAPINT in 
model C2; and FSIZE, AGSUIT, DEBEQRAT, 
and FAMLAB in model C3. This means they do 
not meet the parallel lines assumption, and thus 
they can show a significant coefficient and OR 
estimate in one panel and non-significant ones in 
the other panel.

In the first model explaining the income dynam-
ics of farms included in category C1 (non-viable), 
SPEC and AGSUIT show positive and statisti-
cally significant coefficients in both panels, with 
higher values in the second one, which reports co-
efficients related to categories C1 and C2 vs. C3. 
Consequently, the higher these two variables, the 
higher the probability of moving from the non-vi-
able category to viable in the short term or viable 
in the long term, and the probability of chang-
ing from non-viable or viable in the short term 
to the viable in the long term category is even 
higher. Moreover, in this first model, the variable 
LANDOWN has a significant negative coefficient 
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Table 5 - Coefficients and OR estimates for PPOMs.

C1: Non-viable C2: Viable in the short term C3: Viable in the long term
C1 vs. C2 and C3 Coef. Odd Ratio Coef. Odd Ratio Coef. Odd Ratio
AGE 0.006 1.006 0.039 ** 1.039 ** 0.028 *** 1.028 ***

AGTRAIN 0.380 * 1.462 * -0.273 0.761 -0.415 0.661
FAMLAB -2.541 *** 0.079 *** -2.457 *** 0.086 *** -3.801 *** 0.022 ***

LANDOWN 0.119 1.126 0.371 1.449 -0.407 0.665
FSIZE 0.004 1.004 0.002 1.002 0.004 1.004
AGSUIT 0.002 *** 1.002 *** 0.000 1.000 0.000 1.000
SPEC 1.804 *** 6.071 *** -0.864 0.422 2.891 ** 18.007 **

ICINT -0.002 *** 0.998 *** -0.002 *** 0.998 *** -0.002 *** 0.998 ***

CAPINT 0.000 1.000 1.52E-05 1.000 0.000 1.000
OUTSOUR 5.021 *** 151.604 *** 3.199 * 24.516 * 5.619 *** 275.484 ***

DEBEQRAT -0.176 0.838 46.253 1.2E+20 -35.613 * 0.000 *

OPRICE 1.659 *** 5.256 *** 3.003 *** 20.137 *** 3.530 *** 34.127 ***

WEATHER 0.622 ** 1.862 ** 1.492 *** 4.448 *** 0.774 *** 2.168 ***

CAPDP 0.002 *** 1.002 *** 0.002 *** 1.002 *** 0.002 *** 1.002 ***

Constant -5.258 *** 0.005 *** -4.540 ** 0.011 ** -5.578 *** 0.004 ***

C1 and C2 vs. C3 Coef. Odd Ratio Coef. Odd Ratio Coef. Odd Ratio
AGE 0.006 1.006 0.039 ** 1.039 ** 0.028 *** 1.028 ***

AGTRAIN 0.380 * 1.462 * -0.273   0.761   0.283 1.327
FAMLAB -2.541 *** 0.079 *** -2.457 *** 0.086 *** -2.294 *** 0.101 ***

LANDOWN -0.582 * 0.559 * 0.371 1.449 -0.407 0.665
FSIZE 0.004 1.004 0.002 1.002 0.008 ** 1.008 **

AGSUIT 0.003 *** 1.004 *** 0.002 ** 1.002 ** 0.001 *** 1.001 ***

SPEC 3.606 *** 36.815 *** 2.351 * 10.495  * 2.891 ** 18.007 **

ICINT -0.002 *** 0.998 *** -0.002 *** 0.998 *** -0.002 *** 0.998 ***

CAPINT 0.000 *** 1.000 *** -6.16E-05 *  1.000 0.000 1.000
OUTSOUR 5.021 *** 151.604 *** 3.199 * 24.516 * 5.619 *** 275.484 ***

DEBEQRAT -0.176 0.838 46.253   1.2E+20 7.446 1,713.6
OPRICE 1.659 *** 5.256 *** 3.003 *** 20.137 *** 3.530 *** 34.127 ***

WEATHER 0.622 ** 1.862 ** 1.492 *** 4.448 *** 0.774 *** 2.168 ***

CAPDP 0.002 *** 1.002 *** 0.002 *** 1.002 *** 0.002 *** 1.002 ***

Constant -7.894 *** 0.000 *** -9.942 *** 0.000 *** -8.735 *** 0.000 ***

N. of observations 1,219 343 732
LR χ2 326.92*** 148.01*** 269.10***

Pseudo R2 0.197 0.199 0.229
Count 0.736 0.603 0.735
LL at zero -998.54 -371.56 -587.01
LL at convergence -802.96 -297.56 -452.46
AIC 1,644.39 633.12 946.92
BIC 1,746.51 706.03 1,043.43

Note: Coefficients and Odds Ratios of explanatory variables that do not meet the parallel assumption are in italics.
*p < 0.1; **p < 0.05; ***p < 0.01.
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but only in the second panel, suggesting that the 
probability of moving directly to the viable in the 
long term category increases when the percentage 
of owned land increases. Finally, the variable AG-
TRAIN also shows significant coefficients, with 
the same positive value in both panels since this 
variable meets the proportional odds assumption 
in this model. This result means that a farmer with 
an agricultural degree managing a farm initially 
included in the non-viable category (C1) has a 
higher probability of the farm moving to a more 
viable one (C2, C3), while farms initially includ-
ed in C2 also have the same higher probability of 
moving to C3.

Regarding the second model explaining the 
income dynamics of farms included in catego-
ry C2 (viable in the short term), there are three 
variables which violate the proportional odds 
assumption showing significant coefficients 
(SPEC, AGSUIT, and CAPINT), although these 
coefficients are only significant in the second 
panel (related to categories C1 and C2 vs. C3). 
SPEC and AGSUIT have significant positive co-
efficients implying that higher values of these 
two variables (i.e., higher share of olive farm-
ing area and better local pedoclimatic conditions 
for olive production, respectively) increase the 
probability of the farm moving to the viable 
in the long term category (C3). The variable 
CAPINT shows a negative and significant pa-
rameter, indicating an increasing probability of 
moving directly to the viable in the long term 
category when the capital intensity increases. 
Additionally, in this second model, there is also 
a variable (AGE) meeting the proportional odds 
assumption showing positive and significant co-
efficients in both panels. This means that older 
farmers have a higher probability of staying in 
the C2 category or moving to the viable in the 
long term category (C3).

Lastly, the model explaining the income dy-
namics of farms included in category C3 (via-
ble in the long term) also shows three variables 
that do not meet the parallel assumption and that 
show significant coefficients: FSIZE, AGSUIT, 
and DEBEQRAT. The variables FSIZE and 
AGSUIT have positive coefficients but they are 
only significant for the second panel, meaning 
a higher probability of staying in the viable in 

the long term category (C3) when these varia-
bles have higher values. The variable DEBE-
QRAT presents a significant parameter only in 
the first panel (related to categories C1 vs. C2 
and C3) showing a negative value. Thus, a rise 
in the value of this factor (i.e., higher debt) in-
creases the probability of moving from category 
C3 directly to category C1. In addition, two vari-
ables (SPEC and AGE) meeting the proportional 
odds assumption exhibit significant coefficients 
in this model. These two variables have positive 
coefficients, meaning that those olive farms with 
higher values for both variables have a higher 
probability of remaining in category C3.

Most of the results reported above are aligned 
with those found in the literature focused on 
other agricultural systems elsewhere. Thus, our 
PPOM estimates corroborate the crucial role in 
farm income dynamics played by off-farm un-
controllable factors such as the agricultural com-
modity prices (e.g., Baek and Koo, 2009; Zim-
mermann and Heckelei, 2012) and the subsidies 
granted by the CAP (e.g., Biagini et al., 2020; 
Piet and Desjeux, 2021).

Moreover, the empirical results obtained also 
confirm that much of the interannual variations 
in farm income can be explained by farm-spe-
cific structural factors as the suitability of the 
farmland for agricultural production (e.g., Zim-
mermann and Heckelei, 2012; Allanson et al., 
2017), the farm’s productive specialisation (e.g., 
Barnes et al., 2020; Biagini et al., 2020), the age 
of the farmer (e.g., Gloy and LaDue, 2003; Piet 
and Desjeux, 2021), or the farmer’s manageri-
al ability related to his/her agricultural training 
(e.g., Allanson et al., 2017; Barnes et al., 2020).

However, our results differ from other com-
mon findings in the literature. Probably the most 
notable discrepancy is that farm size did not 
yield significant coefficients (except in the sec-
ond panel of model C3), contradicting evidence 
from many previous studies (e.g., Allanson et al., 
2017; Coppola et al., 2020) showing increasing 
return to scale in farming production. Two cir-
cumstances could explain this divergence. First, 
it is worth noting that very small olive farms 
(those with an SGM of less than 8,000 Euros per 
year or “non-commercial” farms) are not includ-
ed in the RECAN samples. Thus, our results just 
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suggest that, for an economic dimension above 
the threshold to be considered a commercial 
farm, the differences in return to scale are rather 
small given that available olive production tech-
nologies can be adapted to a wide range of farm 
sizes. The second explanation is related to the in-
sensitivity of olive production to labour and in-
termediate consumption (i.e., changes in labour 
and intermediate consumption cause little dif-
ference in the total output obtained). Our results 
suggest that smaller olive farms are more likely 
to opt for more intensive production (i.e., higher 
labour −usually family labour− and intermediate 
consumption input use) as a strategy to obtain 
higher output per hectare and thus compensate 
for any possible handicap regarding returns to 
scale. However, it has been proven that this is 
not an effective strategy since higher values in 
the variables ICINT and FAMLAB increase the 
probability of worsening the farm viability, 
which can only be explained by the farmers’ 
undervaluation of the labour, land, and capital 
inputs they contribute to farming activities. Con-
versely, our results show a positive impact on 
farm viability of the outsourcing strategy (i.e., 
subcontracting more complex agricultural prac-
tices). To the best of the authors’ knowledge, no 
such evidence on outsourcing has been report-
ed before, although this finding could probably 
only be translated to other agricultural systems 
with a similar level of managerial complexity to 
modern olive production.

Finally, other factors commonly reported in 
the literature as affecting farm income, such as 
land ownership (e.g., Barnes et al., 2015; Biag-
ini et al., 2020) or the farm business leverage 
(e.g., Gloy and LaDue, 2003; Allanson et al., 

2017), were not found to be significant in our 
case study. This divergence can probably be ex-
plained by specific characteristics of the Spanish 
olive sector, which largely relies on owned farm-
land (average LANDOWN=87.1%) and owned 
capital resources (average DEBEQRAT=1.5%).

4.3.  Scenario analysis

The three PPOM obtained in the previous 
section allowed us to estimate the transition 
probabilities between farm categories (p ̂ tij) and 
the TPMs Pt for any year t ≥ k +1. Thus, the 
BASELINE scenario and each of the six alter-
native scenarios proposed have been predicted 
following Equation (9), according to the differ-
ent assumptions for the specific explanatory fac-
tors involved in the scenario analysis (OPRICE, 
WEATHER, and CAPD). Table 6 shows the farm 
distributions obtained once they became station-
ary. In all cases, the stationary distributions were 
reached after just 2 years (i.e., for t = k + 2).

The BASELINE scenario shows a farm distri-
bution that is fairly well balanced between cat-
egories C1 and C3, although the share of farms 
that are viable in the long term is 3% higher. 
Thus, under the business-as-usual scenario, a 
clear duality is observed, with the commercial 
olive farms being evenly split into viable in the 
long term and non-viable categories. Bearing in 
mind the results detailed above, the former farms 
are those with more suitable farmland, more 
specialised in olive production and managed by 
older and better trained olive growers who avoid 
implementing excessive intensive production 
techniques while subcontracting more complex 
agricultural practices. The latter farms are those 

Table 6 - Results for scenario simulations: farms distribution among profitability categories.

Scenario C1 C2 C3
BASELINE 46.2% 4.3% 49.5%
OPRICE_2EUR 61.7% 5.2% 33.0%
OPRICE_3EUR 37.9% 4.9% 57.1%
WEATHER=80% 50.3% 3.7% 46.0%
WEATHER=60% 53.5% 3.0% 43.5%
CAP-30% 53.5% 4.9% 41.6%
CAP-50%+10HA 54.1% 4.0% 41.9%
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that do not display said features.
Category C2 is practically non-existent, ac-

counting for just 4.3% of the farms, a low por-
tion also seen in all other scenarios (in all cases, 
C2 lies between 4.0% and 5.2%). This can be 
explained by the relative ‘narrowness’ of this 
category as explained above, meaning that in 
stationary states the farms tend to be classified 
into one of the two extremes categories (non-vi-
able −C1− or viable in the long term −C3) ac-
cording to their specific characteristics and the 
assumptions made in each scenario.

As expected, the variable capturing olive oil 
prices (OPRICE) causes the largest changes in 
farm distributions. Thus, in the OPRICE_2EUR 
scenario, the percentage of non-viable farms (C1) 
increases to 61.7%, while only one-third of the 
farms would remain viable in the long term. Con-
versely, in the favourable price scenario consid-
ered (OPRICE_3EUR), the percentage of non-vi-
able farms (37.9%) would be the lowest among 
all the scenarios considered and, simultaneously, 
the highest percentage of farms that are viable in 
the long term would be reached (57.1%).

Regarding the variable WEATHER, a 20% 
worsening (i.e., WEATHER=80% scenario) 
leads to a 4 percentage point increase in non-via-
ble farms compared to the BASELINE scenario, 
which corresponds to a 0.6 percentage point re-
duction in farms that are viable in the short term 
and 3.5 percentage point drop in ones that are via-
ble in the long term. An additional 20% reduction 
in the WEATHER variable (i.e., WEATHER=60% 
scenario) would lead to a further increase of 3.2 
percentage point in non-viable farms (7.2 percent-
age point increase over the BASELINE scenario), 
while category C3 would drop another 2.5 per-
centage point (6 percentage point decrease over 
the BASELINE scenario). All these estimations 
describing the potential impact of climate change 
suggest that Spanish olive farms are rather resil-
ient, especially the third of the Spanish olive area 
under irrigation, where climate change impacts 
are expected to be minimised.

Finally, CAP payments also exert a consider-
able influence on the farms’ distribution among 
income categories. A 30% decrease in the vari-
able CAPDP (i.e., CAP-30% scenario) yields a 
similar influence to that caused by the WEATH-

ER=60% scenario, with the same percentage of 
farms in category C1; however, the situation is 
worse in terms of farms that are viable in the long 
term, which decrease to 41.6% in this scenario 
(8.1 percentage point less than in the BASELINE 
scenario). These results can be taken as evidence 
that olive farm income is highly dependent on 
CAP subsidies. However, it is worth noting that 
in the scenario with a 50% reduction in the CAP 
decoupled payments variable, but with this cut 
not affecting payments granted for the first 10 
hectares, the impact on farm distribution would 
be very similar to the CAPD-30% scenario, with 
variations below 1 percentage point in all three 
categories. This provides evidence that new CAP 
payments could be designed to minimise the im-
pact of any support cut on the income distribution 
of olive farms.

5.  Concluding remarks

This paper presents a relevant theoretical 
contribution relating to the analysis of farm 
income dynamics. By combining the Markov 
chain and ordinal regression models, the pro-
posed approach allows us to determine which 
factors explain interannual changes in farm 
income (i.e., individual farm movements be-
tween income categories) and predict the im-
pact of future scenarios on individual farms 
income (i.e., stationary income category). The 
empirical application of this approach to Span-
ish olive farms has shown it is sound and easily 
replicable for any other farming sector in the 
EU using the data provided by the FADN (or 
similar accountancy data networks in individ-
ual countries). Moreover, the empirical case 
study performed has also provided evidence 
that the results obtained using this approach are 
useful for ex-ante policy analysis supporting 
policy decision-making.

The empirical results obtained have shown, on 
the one hand, that interannual income variations 
in Spanish olive farms are determined by a com-
bination of off-farm uncontrollable factors such 
as the price of olive oil, the annual weather con-
ditions, and the CAP subsidies. Other factors also 
influencing the dynamics of these farms’ income 
are: a) farm-specific structural features such as 
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the agronomic suitability of the farmland and the 
farm’s productive specialisation; b) farmer-spe-
cific characteristics such as age and agricultural 
training; and c) management factors such as the 
production intensity and the outsourcing strate-
gy. However, it is worth remarking that farm size 
has not yielded significant results in the case of 
the Spanish olive sector, unlike what has been 
found in many other agricultural sectors.

On the other hand, the application of the meth-
od proposed to forecast the distribution of farms 
among income categories under several alterna-
tive scenarios has provided useful results that 
can support policy analysis. Future scenarios 
proposed show that the viability of Spanish ol-
ive farms is very sensitive to market conditions 
(i.e., olive oil prices), such that an increase (de-
crease) in olive oil prices contributes to a rise 
(reduction) in the proportion of viable olive 
farms. Likewise, the worsening of climatic con-
ditions (i.e., decrease in olive yields) and policy 
support (i.e., reduction of CAP decoupled pay-
ments) leads to a decrease in the share of viable 
farms, although these two explanatory variables 
are less relevant than olive oil prices.

Regarding the limitations of the empirical 
analysis performed, it is worth mentioning the 
2-3 years lag in the FADN data (i.e., the latest 
data currently available are for the year 2018). 
In this regard, a faster release of annual account-
ancy data could be very valuable.

Two avenues for future research are suggest-
ed. First, a comparative analysis with other ag-
ricultural sectors and/or other countries could 
be carried out. This could yield useful infor-
mation for policy-makers to support the design 
and implementation of policy instruments, and 
also for farmers themselves, who would be able 
to distinguish between the uncontrollable and 
controllable factors that really influence in-
come generation and competitive position. Sec-
ond, from a methodological perspective, some 
refinements in the methodological approach 
could be tested (e.g., a farm typology with more 
viable categories), and the proposed approach 
could be extrapolated to analyse the dynamics 
of other farm outcomes (e.g., environmental 
performance measured using agri-environmen-
tal indicators).
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