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Appendix 1

Tail dependence for copulas

Tail dependence is a measure of concordance between less probable values of variables. This 
concordance tends to concentrate on the lower and upper tails of the joint distribution.

In a bivariate context, let Fi be the marginal distribution function of a random variable Xi (i=1,2) 
and let u be a threshold value; then the lower tail dependence coefficient, lL , is defined as
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Then, an alternative definition, in terms of copula function, is 
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In a similar way, the upper tail dependence is given by, 
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For Uλ ]1,0(∈ , X1 and X2 are asymptotically dependent on the upper tail; if Uλ  is null, X1 and X2 are asymptotically 

independent. 

Hence, 
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Then, it is possible to recur to an alternative and equivalent definition, for continuous random variables, from which it is 

clear that the concept of tail dependence is indeed a copula property (Joe, 1997) 
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Where Ĉ  is the survival copula function defined as 
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Then, it is possible to recur to an alternative and equivalent definition, for continuous random varia-
bles, from which it is clear that the concept of tail dependence is indeed a copula property (Joe, 1997)
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It is simple to show that Ĉ is strictly related to the copula function through the following relationship
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Non parametric tail dependence measures 

In order to select an adequate copula function able to capture accurately the dependence structure showed by co-

movements of extreme return pair-wise, can be useful to estimate the empirical tail dependence by mean of non-

parametric method.  

The non-parametric bivariate coefficient of lower tail dependence, λL
NP, can be obtained as (De Luca and Rivieccio, 
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* is assumed to be µi − kσi	. This statistic depends on k. 
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λU
NP(k) = P(X2 > x2

*|X1 > x1
* ), 

 

where xi
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A multivariate generalization of the tail dependence coefficients (De Luca and Rivieccio, 2009) consists in to consider h 

variables and the conditional probability associated to the remaining n - h variables, given, respectively, by 

 

.
)u ,...,u(C

)u ,...,u(C                

)u)X(F,...,u)X(F|u)X(F,...,u)X(F(P

hn

n

0u

nn1h1hhh11
0u

n...1h|h...1
L

lim

lim

⎭
⎬
⎫

⎩
⎨
⎧

=

≤≤≤≤=

−

++
+

+

+

→

→
λ

 

 

Indeed, the upper (lower) tail dependence coefficient can be interpreted as the probability of very high (low) returns for 

h assets provided that very high (low) returns have occurred for the remaining n−h assets. 
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