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Abstract
This paper examines the impact of climate variability on agricultural production in 12 Moroccan re-
gions, differentiating between rain-fed and irrigated crops. Using a spatial panel data model with a 
21-year (1999-2019), we analyze the impact of climatic and economic variables on three main crops: 
cereals, market gardening and rosaceous plants, while taking into account spatial autocorrelation and 
regional heterogeneity. The results highlight the sensitivity of various crops to variations in temperature 
and precipitation, revealing significant spillover effects due to omitted variables or shocks not observed 
in a spatial pattern. Thus, rainfall has a positive impact on rain-fed cereals but a negative impact on 
irrigated crops, underlining the inefficiencies of irrigation techniques and the need for sustainable water 
management. Irrigated rosaceae crops show high temperature sensitivity, underlining the urgency of 
climate-resilient agricultural practices. This finding underscores the urgent need for targeted regional 
public policies rather than standardized national policies to mitigate the effects of climate variability on 
Moroccan agriculture and ensure its long-term sustainability.

Keywords: Climate variability, Agriculture, Spatial panel data, Production function approach, Morocco.

1. Introduction

The effects of climate change have been in-
creasingly recognized. Observations of climate 
change in the Mediterranean region, presented 
in the sixth assessment report (AR6) of IPCC 
(2022), show a significant increase in tempera-
ture (from 0.9 to 5.6°C) and a decrease in pre-
cipitation (from 4% to 22%) over the last two 
decades of the 21st century.

Morocco, like other Mediterranean coun-
tries, has experienced a temperature increase of 
+0.42°C/ decade since 1990, accompanied by 

a decrease in precipitation of more than 20% 
between 1961 and 2005 (Driouech et al., 2010). 
More recently, Amouzay et al. (2023) identified 
a significant structural break in temperature 
in 1993 and another break related to precipi-
tation in 1972. These breakpoints confirm the 
current trends in climate data. Indeed, a study 
by Driouech et al. (2021) based on data from 
30 meteorological stations covering the period 
from 1960 to 2016 showed that the daily tem-
perature in Morocco has risen at higher rates 
than the global scale. The depicted trend of 
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0.33°C per decade corresponds to a warming of 
approximately 1.1°C for 1984-2016. However, 
the annual mean precipitation and standardized 
drought index showed less spatially consistent 
tendencies despite the predominance of nega-
tive trends. Furthermore, projections of climate 
trends indicate that this situation is likely to 
persist (Filahi et al., 2017).

The increasing variability in precipitation and 
high frequency of droughts will likely further re-
duce the availability of water resources (Woillez, 
2019). This, in turn, negatively impacts potential 
agricultural yields, employment opportunities, and 
the purchasing power of rural populations (Abdel-
majid et al., 2021). Indeed, the Moroccan agri-
cultural sector plays a key role in the country’s 
economic fabric given its contribution to gross 
domestic product (GDP) and its interaction with 
other economic sectors. According to report of 
Ministry of Economy (2019), the weight of the 
Agricultural Gross Domestic Product (AGDP) 
in GDP varied between 12% and 14% between 
2008 and 2018, with an average of 12.8%. The 
agricultural sector also plays a vital social and ter-
ritorial role, employing nearly 40% of the active 
population at the national level, and 74% in rural 
areas (Ministry of Agriculture, 2019). Agricul-
ture’s vital importance to the national economy 
makes a country vulnerable to climate risks that 
threaten its food security (Abdelmajid et al., 
2021; Palatnik and Lourenço Dias Nunes, 2015; 
Toumi et al., 2021).

This study aims to shed further light on the im-
pact of climate variability on Moroccan agricul-
ture using regional data for key agricultural prod-
ucts in both rainfed and irrigated areas. Indeed, 
climate variability manifests itself heterogeneous-
ly in space, with its impact varying significantly 
across different regions of the globe (Desmet and 
Rossi-Hansberg, 2024). Consequently, regions 
whose economies are heavily reliant on agricul-
ture, which is inherently sensitive to tempera-
ture variations and extreme weather events, are 
more likely to experience significant damage than 
those whose economies are focused on industry 
or services, which are generally less dependent on 
climatic conditions (IPCC, 2023). Analyzing the 
impacts of climate variability on agricultural pro-
duction necessitates a spatial approach, as effects 

are not confined to the directly affected regions. 
Indeed, Chatzopoulos and Lippert (2016) identi-
fy five key motivations for this inclusion. First, it 
minimizes omitted variable bias by incorporating 
spatial information otherwise neglected. Second, 
it controls for spatial dependence that can emerge 
from data aggregation, as aggregated units can 
be artificially more homogeneous. Third, inter-
actions between landowners, who inform each 
other about prices and valuations, create spatial 
dependence. Fourth, land use practices shared 
by neighboring farms reinforce this dependence. 
Finally, land investments create external benefits 
for adjacent plots, which can be modeled using 
spatial lags of the explanatory variables. Thus, 
our goal is to emphasize the importance of using 
spatial panel data models to calculate spatial au-
tocorrelation and spillover effects across regions, 
thereby providing policymakers with more accurate 
quantitative information on how Moroccan agri-
culture adapts to climate risks. By integrating 
the spatial dimension into our analysis, we can 
better understand the complex mechanisms link-
ing climate variability to agricultural production 
in Morocco, and thus develop more effective and 
sustainable adaptation strategies.

This study’s originality lies in its use of recent 
disaggregated data (spanning three categories: 
regions, products, and production methods) while 
explicitly employing spatial econometric tech-
niques applied to panel data to account for spa-
tial effects. Specifically, this article makes three 
major contributions to the existing national-lev-
el literature on the impact of climate variability 
on agriculture. Firstly, it utilizes a spatial panel 
data approach, which captures spatial autocor-
relation and regional heterogeneity, aspects often 
overlooked in previous analyses. Literature has 
demonstrated that the impact of climate variabil-
ity varies significantly across regions (Auffham-
mer et al., 2013), creating spatial heterogeneity 
influenced by geographical and economic fac-
tors (Chen et al., 2016; Coulibaly et al., 2020; 
Karahasan and Pinar, 2023; Vaitkeviciute et al., 
2019; Zouabi and Peridy, 2015), thus necessitat-
ing contextualized solutions adapted to local re-
alities (Desmet and Rossi-Hansberg, 2024). This 
approach allows us to highlight the geographical 
spillover effects of climate variability on agricul-
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tural production across regions, an aspect ignored 
by most national studies. This contribution is all 
the more important as the literature emphasiz-
es the spatial heterogeneity of climate variabil-
ity impact (Desmet and Rossi-Hansberg, 2024), 
requiring solutions tailored to local specificities. 
Taking into account the spatial dimension al-
lows for a better delineation of the areas affect-
ed by climate variability and directs adaptation 
policies towards regionalized solutions, in line 
with local priorities. To the best of our knowl-
edge, this is the first time such an approach has 
been adopted to study the impact of climate var-
iability on Moroccan agriculture. Secondly, the 
study addresses a gap by focusing on an anal-
ysis of disaggregated data up to 2019, both at 
the regional level and for specific crops (cereals, 
market gardening, and rosaceous crops), allow-
ing for the distinction of differentiated impacts of 
climate variability on various productions. This 
multi-level approach, often neglected by nation-
al studies that primarily focus on rain-fed cereal 
crops, offers a finer perspective and provides up-
dated evidence on the vulnerability of the Moroc-
can agricultural sector, enabling the identification 
of the most climate-sensitive crops. Finally, the 
study compares the impacts of climate variabil-
ity on rain-fed and irrigated production systems, 
highlighting the limited effectiveness of current 
irrigation practices and emphasizing the impor-
tance of investing in more efficient adaptation 
strategies. This comparison is essential for devel-
oping agricultural policies that consider the spe-
cificities of each production system and promote 
sustainable water resource management.

The remainder of this paper is organized as fol-
lows: The literature review and the methodologi-
cal framework is presented in the Sections 2 and 3. 
Section 4 describes the study’s context, variables, 
and data sources. It also proposes a spatial ex-
ploratory analysis of agricultural production in 
Morocco using global and local spatial autocor-
relation. Section 5. Section 6 concludes the study 
and provides policy proposals.

2. Literature Review

A large and active body of literature quanti-
fies the impact of weather and climate change on 

agriculture worldwide (see Ortiz-Bobea [2021] 
for a recent review of the literature). Indeed, to 
properly understand existing relationships be-
tween climate and agriculture, some analysts 
(Blanc and Reilly, 2017) emphasize that econo-
mists favor statistical approaches based on farm-
ers’ experience. In particular, these authors distin-
guish the Ricardian approach (Mendelsohn et al., 
1994) and the agricultural production function 
approach (Deschênes and Greenstone, 2007) 
as those most frequently used in the empirical 
literature. On the one hand, the Ricardian ap-
proach is a cross-sectional analysis of land val-
ue per hectare that assumes that farmers behave 
optimally in the long term and that land value 
reflects the future income stream that the farm-
er would receive from the best land allocation 
(Mendelsohn et al., 1994). On the other hand, 
the agricultural production function approach is 
a panel analysis of net revenue/profit/production 
as a function of weather, and is based on the an-
nual behavior of producers seeking to maximize 
their revenues (Deschênes and Greenstone, 2007). 
This is a short-term approach where agricultural 
revenues in the observed year are affected only 
by climate variability as measured by weather 
conditions in the same year (Auffhammer et al., 
2013; Dell et al., 2014). The latter approach is 
particularly used in developing countries because 
of insufficient availability of data for the Ricard-
ian approach (Blanc and Reilly, 2017). African 
countries often find it difficult to apply Ricardian 
models because of the unavailability of informa-
tion on private landowners in most countries. In 
addition, a proportion of agricultural land is held 
by village communities or the state, resulting in 
a lack of land transactions to assess land values 
(Mendelsohn and Dinar, 2009).

A great deal of other work on modeling the 
impacts of climate change on agriculture on a 
global or regional scale is available in scientific 
literature. However, specific studies on Morocco 
have been conducted (Balaghi et al., 2016, 2008; 
Belcaid and El Ghini, 2019; Fader et al., 2016; Gi-
annakopoulos et al., 2009; Gommes et al., 2009; 
Ponti et al., 2014; Rosenzweig et al., 2014; Schil-
ling et al., 2012), as indicated in the synthesis and 
analysis of the literature by Woillez (2019). In 
particular, we point to a study by the MOSAICC 
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project (Balaghi et al., 2016), which used projec-
tions from three different GCMs to simulate the 
impact of climate change on rain-fed wheat and 
barley (bour) yields using the Aqua Crop model. 
According to those authors, increasing tempera-
tures and declining precipitation led to a decrease in 
simulated yields for the majority of Morocco’s ma-
jor agricultural regions by the mid-century in both 
the RCP4.5 and RCP8.5. Wheat and barley yields 
increase only in mountainous regions and in the 
north of the country, where warming creates more 
favorable conditions. The aggregation of these 
yield evolutions and their inclusion in a CGE-type 
economic model has a rather limited impact on 
Moroccan GDP. Other studies have focused on the 
role of public policies, particularly the Green Mo-
rocco Plan (GMP), as tools for adaptation to climate 
risks that can ensure food security for Moroccans 
(Abdelmajid et al., 2021; Akesbi, 2012; Oulhaj et 
al., 2013; Ouraich and Tyner, 2018; Sraïri, 2021). 
Indeed, Ouraich and Tyner (2018) studied the im-
pact of climate change on productivity shocks in 
the agricultural sector. Using a regionalized com-
putable general equilibrium model, the authors 
estimated the potential adaptation of Morocco’s 
current agricultural development and investment 
strategy, the GPM. The results indicated no major 
differences between the impacts of climate change 
with and without the GPM. In the absence of GPM 
adaptation, the impact on GDP ranged from −3.1% 
to +0.4%. Including the GPM targets, the impact 
on the GDP ranges from −2.9% to +0.43%. Very 
recently, Abdelmajid et al. (2021) examined the 
constraints induced by climate change on natural 
resources and investigated the extent to which the 
agricultural sector and GMP can ensure food se-
curity in Moroccans under these constraints. These 
authors argue that the Moroccan agricultural policy 
pursued until now, and particularly the GMP, may 
well aggravate the consequences of climate change 
on natural resources, especially water, and, by ex-
tension, the food security of the country as a whole.

Despite the remarkable proliferation of empiri-
cal work over the past two decades, econometric 
models incorporating the spatial dimension have 
rarely been used to study the impact of climate 
change on Moroccan agriculture. Indeed, these 
studies fail to account for the spatial interaction of 
data, which could potentially introduce estimation 

biases (Chen et al., 2016; Schlenker et al., 2006; 
Vaitkeviciute et al., 2019). Thus, our intention is 
to account for spatial interaction in our modeling, 
resulting from both the geographical proximity of 
Moroccan regions and our gridded meteorologi-
cal data (Auffhammer et al., 2013), by utilizing 
the production function approach initially sug-
gested by Deschênes and Greenstone (2007).

3. Methodology

Our methodology for assessing the poten-
tial impacts of climate change on Moroccan 
agricultural production relies on observing the 
evolution of meteorological and socioeconomic 
variables over a defined period. First, we exam-
ine the empirical model specification adopted in 
our case study (3.1), then introduce linear models 
with spatial interaction on panel data and specify 
the testing procedures employed (3.2).

3.1.  Empirical Model Specification

The literature review indicates that the produc-
tion function approach is dominant in many studies 
on developing countries owing to data availability. 
We use specifications similar to those in Zouabi 
and Peridy (2015). This study analyzes the link be-
tween agricultural production and annual weather 
fluctuations in Tunisian regions using fixed-effects 
models, which would appear to be appropriate for 
assessing short-term relationships and should thus 
be preferred in the production function approach. 
The latter is based on the Cobb-Douglas type pro-
duction function assumption (Jones et al., 2017). 
We can estimate the aggregate agricultural produc-
tion function in Morocco while accounting for the 
effects of key weather variables on the changes in 
agricultural production. The basic Cobb-Douglas 
production function can be written as

  (1)

where Yit denotes the given production in coun-
try i and in year t, Kit and Lit reflect respectively 
the capital and labor used in agriculture. Capital 
was represented by three variables: land, irriga-
tion area, and livestock (or Draught animals). 
Labor is represented by the agricultural labor 
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where Yit denotes the given production in country i and in year t, Kit and Lit reflect respectively

the capital and labor used in agriculture. Capital was represented by three variables: land, irrigation

area, and livestock (or Draught animals). Labor is represented by the agricultural labor force. Tit
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coefficients to be estimated and can be interpreted as elasticities. Ait includes unobserved variables

(such as soil quality, labor skills, and technical progress) that can influence agricultural production.

These unobserved effects can be evaluated using the following equation:

Ait = Aeui+νt+εit (2)

where ui, νt and εit represent the specific effects at the regional level, time-specific effects, and

idiosyncratic error terms, respectively.

Substituting (2) into (1) yields:

Yit = Aeµi+νt+εitKα
itL

β
itT

θ
itP

γ
it (3)

After log transformation, the fixed effects model of this study is as follows:

log (Yit) = log(A) + αlog (Kit) + βlog (Lit) + θlog (Tit) + γlog (Pit) + µi + νt + εit, (4)
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force. Tit and Pit correspond to average tempera-
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are the coefficients to be estimated and can be in-
terpreted as elasticities. Ait includes unobserved 
variables (such as soil quality, labor skills, and 
technical progress) that can influence agricultur-
al production. These unobserved effects can be 
evaluated using the following equation:
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After log transformation, the fixed effects mod-
el of this study is as follows:

  (4)

This panel-data model can be used to account 
for irrigated crops. Agronomic research suggests 
that irrigated crops respond differently to climate 
than rain-fed crops do (Mendelsohn and Dinar, 
2009). Schlenker et al. (2006) tests different 
model specifications by including an irrigation 
variable in a model for all counties and then sepa-
rating the sample into irrigated and non-irrigated 
counties. Deschênes and Greenstone (2007) and 
Wang et al. (2009) build on these results and offer 
regression analyses on separate samples as well 
as on the full sample, covering both irrigated and 
non-irrigated countries. Drawing on these stud-
ies, we substitute agricultural production and 
total land area for irrigated crops in Equation 4 
when estimating these types of crops.

3.2.  Panel Spatial Models used in Climate 
Change impact on Agriculture Studies

Most empirical studies based on production 
function use panel data. However, over the past 
decade, spatial autocorrelation has begun to fea-
ture prominently in econometric studies of the 
impacts of climate change on agriculture (Chatz-
opoulos and Lippert, 2016; Chen et al., 2016; Or-

tiz-Bobea, 2016; Polsky, 2004; Schlenker et al., 
2006; Schmidtner et al., 2015; Vaitkeviciute et al., 
2019). Indeed, the inclusion of state-fixed effects 
could amplify the omitted-variable bias if they op-
erate more strongly within states than across states, 
as shown in Ortiz-Bobea (2021). Nonetheless, the 
introduction of the spatial panel model address-
es this issue and allows for convincing control of 
time-invariant confounders. Because our sample 
is composed of regions that are part of the same 
country and have common characteristics (in terms 
of climate, infrastructure, production systems, 
etc.), it is necessary to consider the interactions 
caused by geographical proximity, also called spa-
tial interaction, in the modeling. Consequently, we 
follow Vaitkeviciute et al. (2019) and Karahasan 
and Pinar (2023) in our analysis and adopt a panel 
Spatial Error Model (SEM), which is the most suit-
able specification for this type of aggregated data. 
Indeed, according to Vaitkeviciute et al. (2019), a 
Spatial AutoRegressive (SAR) model and a Spa-
tial Lag to the explanatory X variables (SLX mod-
el) are not suitable for our case because the SAR 
model is interesting in the context of individual 
(farm)-level data, whereas the SLX model is ex-
cluded because of collinearity issues. This leads 
us to work with an SEM that captures the global 
spatial autocorrelation. In other words, the spatial 
autocorrelation of errors implies the possible pres-
ence of measurement errors that tend to propagate 
across aggregated unit boundaries, omitted vari-
ables, or unobserved shocks that follow a spatial 
pattern. In addition, the existence of spatial auto-
correlation can be explained by different data as 
well as by the aggregation process scales.

The SEM model is better suited for aggregated 
data, mainly because of the possible existence 
of spatial autocorrelation in the residuals, which 
in turn can be attributed to the construction of 
weather data (Vaitkeviciute et al., 2019). There-
fore, we used an SEM panel model that implies 
the following residual term:

  

such that 

following residual term:

log (Yit) = log(A) + αlog (Kit) + βlog (Lit) + θlog (Tit) + γlog (Pit) + µi + νt + εit,

such that εit = ρ
∑N

k=1 ωikηik + ϵit, (5)

where εit correspond to the residual term which is composed of the spatially autocorrelated

error term, ωik is the generic element of a nonnegative, N × N spatial-weight matrix WN in which

neighborhood relationships between regions are defined, ρ is the spatial autocorrelation coefficient

that captures a correlated effect of unobservable characteristics, ηik is the spatially correlated error

term, and ϵit is the error term.

The choice between these models is made through specification tests described in the practical bottom-

up approach (see Le Gallo [2002] for a summary), which begins with the non-spatial model. We then

use Lagrange Multiplier tests (LMLAG and LMERR) and their robustness (Robust-LMLAG and

Robust-LMERR) to determine the SAR, SEM, or non-spatial model [Anselin, 1988; Anselin et al.,

1996].

4 Context, Data and Exploratory Analysis

This study leverages panel data collected from a sample of 12 regions within Morocco spanning the

period from 1999 to 2019. Our selection of variables and regions was constrained by the availability

of consistent data on both climate and agriculture. In this section, we first provide context (4.1)

by outlining the Moroccan agricultural landscape, highlighting the predominance of rain-fed areas

and the importance of cereal production. It also emphasizes the spatial and temporal variability

in agricultural production, and underscores the impact of spatial concentration of crops on regional

economic performance. The second sub-section (4.2) details the data sources used in the analysis,

explaining the origin and measurement of economic and meteorological variables, and emphasizing

the importance of accounting for crop-specific growing seasons. Finally, the third sub-section (4.3)

focuses on spatial exploratory analysis, using the Moran’s I test to identify the spatial autocorrelation
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where εit correspond to the residual term which 
is composed of the spatially autocorrelated error 

3 Methodology

Our methodology for assessing the potential impacts of climate change on Moroccan agricultural

production relies on observing the evolution of meteorological and socioeconomic variables over a

defined period. First, we examine the empirical model specification adopted in our case study (3.1),

then introduce linear models with spatial interaction on panel data and specify the testing procedures

employed (3.2).

3.1 Empirical Model Specification

The literature review indicates that the production function approach is dominant in many studies

on developing countries owing to data availability. We use specifications similar to those in Zouabi

and Peridy [2015]. This study analyzes the link between agricultural production and annual weather

fluctuations in Tunisian regions using fixed-effects models, which would appear to be appropriate for

assessing short-term relationships and should thus be preferred in the production function approach.

The latter is based on the Cobb-Douglas type production function assumption [Jones et al., 2017].

We can estimate the aggregate agricultural production function in Morocco while accounting for the

effects of key weather variables on the changes in agricultural production. The basic Cobb-Douglas

production function can be written as

Yit = F (Kit, Lit, Tit, Pit) = AitK
α
itL

β
itT

θ
itP

γ
it , (1)

where Yit denotes the given production in country i and in year t, Kit and Lit reflect respectively

the capital and labor used in agriculture. Capital was represented by three variables: land, irrigation

area, and livestock (or Draught animals). Labor is represented by the agricultural labor force. Tit

and Pit correspond to average temperature and precipitation, respectively. α, β, θ, and γ are the

coefficients to be estimated and can be interpreted as elasticities. Ait includes unobserved variables

(such as soil quality, labor skills, and technical progress) that can influence agricultural production.

These unobserved effects can be evaluated using the following equation:

Ait = Aeui+νt+εit (2)

where ui, νt and εit represent the specific effects at the regional level, time-specific effects, and

idiosyncratic error terms, respectively.

Substituting (2) into (1) yields:

Yit = Aeµi+νt+εitKα
itL

β
itT

θ
itP

γ
it (3)

After log transformation, the fixed effects model of this study is as follows:

log (Yit) = log(A) + αlog (Kit) + βlog (Lit) + θlog (Tit) + γlog (Pit) + µi + νt + εit, (4)
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following residual term:

log (Yit) = log(A) + αlog (Kit) + βlog (Lit) + θlog (Tit) + γlog (Pit) + µi + νt + εit,

such that εit = ρ
∑N

k=1 ωikηik + ϵit, (5)

where εit correspond to the residual term which is composed of the spatially autocorrelated

error term, ωik is the generic element of a nonnegative, N × N spatial-weight matrix WN in which

neighborhood relationships between regions are defined, ρ is the spatial autocorrelation coefficient

that captures a correlated effect of unobservable characteristics, ηik is the spatially correlated error

term, and ϵit is the error term.

The choice between these models is made through specification tests described in the practical bottom-

up approach (see Le Gallo [2002] for a summary), which begins with the non-spatial model. We then

use Lagrange Multiplier tests (LMLAG and LMERR) and their robustness (Robust-LMLAG and

Robust-LMERR) to determine the SAR, SEM, or non-spatial model [Anselin, 1988; Anselin et al.,

1996].

4 Context, Data and Exploratory Analysis

This study leverages panel data collected from a sample of 12 regions within Morocco spanning the

period from 1999 to 2019. Our selection of variables and regions was constrained by the availability

of consistent data on both climate and agriculture. In this section, we first provide context (4.1)

by outlining the Moroccan agricultural landscape, highlighting the predominance of rain-fed areas

and the importance of cereal production. It also emphasizes the spatial and temporal variability

in agricultural production, and underscores the impact of spatial concentration of crops on regional

economic performance. The second sub-section (4.2) details the data sources used in the analysis,

explaining the origin and measurement of economic and meteorological variables, and emphasizing

the importance of accounting for crop-specific growing seasons. Finally, the third sub-section (4.3)

focuses on spatial exploratory analysis, using the Moran’s I test to identify the spatial autocorrelation

of agricultural production across Moroccan regions and exploring potential explanations for this

spatial dependence.

4.1 Contextualizing the Moroccan Agricultural Landscape

With an area of nearly 8.7 million hectares, Morocco’s Useful Agricultural Area (UAA) is rich in

agro-climatic systems that allow it to produce a very wide range of crops in Morocco, both irrigated

and non-irrigated. These are mainly cereals, fruit crops (generally composed of rosacea, olives, and

almonds), fallow land, fodder crops, market gardens, leguminous, and others [Ministry of Agriculture,
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term, ωik is the generic element of a nonnega-
tive, N × N spatial-weight matrix WN in which 
neighborhood relationships between regions are 
defined, ρ is the spatial autocorrelation coeffi-
cient that captures a correlated effect of unob-
servable characteristics, ηik is the spatially corre-
lated error term, and ϵit is the error term.

The choice between these models is made 
through specification tests described in the practi-
cal bottom-up approach (see Le Gallo [2002] for 
a summary), which begins with the non-spatial 
model. We then use Lagrange Multiplier tests 
(LMLAG and LMERR) and their robustness 
(Robust-LMLAG and Robust-LMERR) to de-
termine the SAR, SEM, or non-spatial model 
(Anselin, 1988; Anselin et al., 1996).

4. Context, Data and Exploratory Analysis

This study leverages panel data collected from 
a sample of 12 regions within Morocco spanning 
the period from 1999 to 2019. Our selection of 
variables and regions was constrained by the 
availability of consistent data on both climate and 
agriculture. In this section, we first provide con-
text (4.1) by outlining the Moroccan agricultural 

landscape, highlighting the predominance of rain-
fed areas and the importance of cereal produc-
tion. It also emphasizes the spatial and temporal 
variability in agricultural production, and under-
scores the impact of spatial concentration of crops 
on regional economic performance. The second 
sub-section (4.2) details the data sources used in 
the analysis, explaining the origin and measure-
ment of economic and meteorological variables, 
and emphasizing the importance of accounting 
for crop-specific growing seasons. Finally, the 
third sub-section (4.3) focuses on spatial explora-
tory analysis, using the Moran’s I test to identify 
the spatial autocorrelation of agricultural produc-
tion across Moroccan regions and exploring po-
tential explanations for this spatial dependence.

4.1.  Contextualizing  the  Moroccan 
Agricultural  Landscape

With an area of nearly 8.7 million hectares, 
Morocco’s Useful Agricultural Area (UAA) is 
rich in agro-climatic systems that allow it to pro-
duce a very wide range of crops in Morocco, both 
irrigated and non-irrigated. These are mainly ce-
reals, fruit crops (generally composed of rosacea, 

Figure 1 - Breakdown of the main crops and UAA in Morocco. 

Source: Ministry of Agriculture, 2019.

(a) The main crops production (b) The utilised agricultural area (UAA)
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olives, and almonds), fallow land, fodder crops, 
market gardens, leguminous, and others (Minis-
try of Agriculture, 2019). However, this UAA is 
characterized by the dominance of rain-fed are-
as (Bour) (up to 80% of the total UAA) and the 
consequent weight of cereals (nearly 59% of the 
total UAA, that is, 79% of the UAA in rain-fed 
areas, as shown in Figure 1).

Analysis of inter-regional variability over the 

period 1999-2019 shows that production instabil-
ity is not only temporal but also spatial. Indeed, 
the distribution by regional zone shows that 
most crops are spatially concentrated (Figure 2 
below). For example, cereals and tree crops are 
located in the northwest (Tangier-Tetouan-Al-Ho-
ceima, Rabat-Salé-Kenitra, Casablanca-Settat, 
Marrakech-Safi, Béni Mellal-Khénifra) and 
northeast (Fez-Meknes and Oriental) regions, re-

Figure 2 - Agricultural production in Morocco: spatial patterns of irrigated and rainfed crops (1999-2019).

(a) Irrigated Cereals (b) Rainfed Cereals

(c) Irrigated market gardens (d) Rainfed market gardens

(e) Irrigated Rosaceous (f) Rainfed Rosaceous
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spectively. This explains the differentiation in the 
performance of the agricultural sector according to 
these regions in terms of their weight in the nation-
al AGDP. Indeed, according to report of Ministry 
of Economy (2019), during the period 2001-2016, 
the region of Fez-Meknes recorded the largest 
share in the national agricultural value-added, with 
an average share of 16.5%, followed by the region 
of Marrakech-Safi (14.2%), Rabat-Salé-Kénitra 
(13.4%), and Casablanca-Settat (12%).

4.2.  Data  Sources  and Measurement

As previously mentioned, we use regional 
panel data describing the annual production of 
three types of crops: Cereals (aggregation for ce-
real products: wheat, barley, and corn), Market 
Gardening (aggregation for products: Tomatoes, 
Potato and Onion), and Rosaceous (aggregation 
of products: Almond, Apricot, Plum, Apple and 
Pear) as a function of meteorological variables 
(Precipitation and Temperature) and agricultur-
al inputs (Total Area of Rain-fed and Irrigated 
Land, Livestock and Labor) in the twelve Mo-
roccan regions, namely Tangier-Tetouan-Al Ho-
ceima, Oriental, Fez-Meknes, Rabat-Salé-Kéni-
tra, Béni Mellal-Khénifra, Casablanca-Settat, 
Marrakesh-Safi, Drâa-Tafilalet, Souss-Massa, 
Guelmim-Oued Noun, Laâyoune-Sakia El Ham-
ra, Dakhla-Oued Ed-Dahab. The time dimension 
of the panel data covers a period of twenty-one 
years (1999-2019).

The data concerning economic variables (Pro-
duction, Labor, Capital) is drawn from the da-
tabase built with the help of Geographic Infor-
mation Systems (GIS) existing since the 1990s 
at the level of the Haut Commissariat au Plan 
(HCP)1. Production is measured in tons. The con-
tribution of capital is represented by livestock (in 
this context, refers to draught animals) and land 
inputs. Indeed, the capital requirements of tradi-
tional agriculture are low, and Moroccan agricul-
ture relies mainly on animal traction. Therefore, 
we use the number of donkeys, horses, and mules 
as an indicator of this livestock input, as it was 
done in many other studies (Antle, 1983; Barrios 

1 Annuaire Statistique des Régions from 1999 to 2019, available at the library of HCP.

et al., 2008; Frisvold and Ingram, 1995; Hayami 
et al., 1971; Nguyen, 1979). Land supply is rep-
resented by the total area of rain-fed agricultural 
land measured in hectares. Irrigation can be crucial 
for production under drought conditions, so it is 
important to account for changes in the propor-
tion of irrigated land per hectare over time when 
estimating irrigated crop production function 
(Ward et al., 2014). Labor is also a key determi-
nant of the agricultural production function. We 
employ the regional agricultural labor data drawn 
from the HCP database to account for this factor 
in our production function specifications.

Finally, meteorological data at the regional 
level, including average monthly temperature 
and total monthly precipitation, are gridded data 
extracted from the Global Climate Monitor (GC-
Mon) Web Viewer database. This tool, which is 
both a data model and a visualization platform, 
provides access to global climate data (Camaril-
lo-Naranjo et al., 2019). The data available are 
based on the CRU TS3.21 version of the Univer-
sity of East Anglia Climate Research Unit da-
tabase, covering the period from January 1901 
to December 2012, with a spatial resolution of 
half a degree in latitude and longitude (Harris 
et al., 2014; 2020). From January 2013 until the 
present, data supplying the GCMon system have 
come from the Global Precipitation Climatol-
ogy Centre (GPCC) for precipitation (Fan and 
Van den Dool, 2008), and the Global Historical 
Climatology Network-Monthly (GHCN-M) ver-
sion 3.2.1 for global mean temperature (Ziese et 
al., 2011). The collected monthly weather data 
were then used to aggregate the annual weather 
variables (mean temperature and total cumula-
tive precipitation), to account for the effects of 
weather fluctuations at the specific periods of 
the year when climate is critical to the growth 
of rain-fed crops. Indeed, according to Blanc and 
Reilly (2017) the use of variables from specif-
ic periods of the year in the estimates makes it 
possible to capture discrete parts of the response 
function. For this reason, and using information 
on the normal agricultural growth cycle in Mo-
rocco by year provided by Balaghi et al. (2008), 
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we calculated the weather variables for the grow-
ing season for each of the three crops examined in 
our case study2.

However, since irrigation is technically prac-
ticed throughout the year, we aggregate the me-
teorological variables annually (from January 
to December) without taking into consideration 
the growing seasons of the irrigated crops. Ta-
ble 1 presents the descriptive statistics of our 
economic data.

4.3.  Exploratory Spatial Analysis

This section examines the spatial dimension of 
agricultural production and climate variability in 
Morocco through spatial autocorrelation analysis. 
Building on the global spatial correlation identi-
fied by Moran’s I (4.3.1), we utilize the Local 
Indicator of Spatial Association (LISA) to ex-
plore the localized patterns of crop production 
and meteorological variable clustering (4.3.2).

4.3.1. Exploring Spatial Dependence: Evidence 
from Moran’s I Statistic

The spatial dimension of the geographic loca-
tion of agricultural production and meteorological 

2 According to Balaghi et al. (2008), the cropping-practices are adapted to the bimodal rainfall distribution in the 
country. The first peak in autumn–winter fills the soil moisture reserves and allows the establishment of the crop. The 
second peak in the spring months is used for dry matter accumulation. Sowing takes place between September and 
December, depending on the precocity of first precipitations in autumn. Harvest starts around June in the South and 
continues until July for the Northern regions, as temperatures rise first in the South. 

variables can be further explored using global 
correlation statistics, such as the Moran’s I test, 
which identifies spatial correlation between Mo-
roccan regions. This test, first introduced by Mo-
ran (1948), determines whether regions with similar 
values for agricultural production and meteorological 
variables tend to cluster together spatially.

The Moran’s I statistic is defined as follows:

  (6)

Table 2 presents the results of Moran’s I test, its 
standard deviations (Sd(I)) and p-value, allowing 
for assessment of the significance of its results for 
agricultural production and meteorological vari-
ables. Moran’s I statistic is calculated using the 
neighborhood matrix W and the values of the 
variable under study. To analyze the spatial rela-
tionships between the data, we employed spatial 
weight matrices, which represent the neighbor-
hood relationships between data points. Inspired 
by the work of Le Gallo and Ndiaye (2021), these 
matrices are commonly used in spatial economet-
rics and allow for quantifying the influence of 
neighboring points on a given point. We consid-

Table 2: Global spatial correlation test Moran’s I

Variables Moran’s I statistic Standard deviation p-value

Rainfed Crops
Log_Rainfed_Cereals 0.269∗∗∗ 3.385 0.00035
Log_Rainfed_Market_Gardening 0.241∗∗ 2.0859 0.01849
Log_Rainfed_Rosaceous 0.318∗∗∗ 1.5486 6.002e−05

Irrigated Crops
Log_Irrigated_Cereals 0.225∗∗∗ 2.9762 0.0014
Log_Irrigated_Market_Gardenin 0.257∗∗ 2.1866 0.0143
Log_Irrigated_Rosaceous 0.157∗∗∗ 2.3386 0.0096

Meteorological Variables
Average Precipitation 0.434∗∗∗ 3.296 0.00049
Average Temperature 0.306∗∗∗ 2.4901 0.0063

determines whether regions with similar values for agricultural production and meteorological vari-

ables tend to cluster together spatially. The Moran’s I statistic is defined as follows:

IW =
n∑

i

∑
j Wij

.

∑
i

∑
j Wij(yi − y)(yj − y)∑

i(yi − y)2
(6)

Table 2 presents the results of Moran’s I test, its standard deviations (Sd(I)) and p-value, allowing

for assessment of the significance of its results for agricultural production and meteorological variables.

Moran’s I statistic is calculated using the neighborhood matrix W and the values of the variable

under study. To analyze the spatial relationships between the data, we employed spatial weight

matrices, which represent the neighborhood relationships between data points. Inspired by the work

of Le Gallo and Ndiaye [2021], these matrices are commonly used in spatial econometrics and allow

for quantifying the influence of neighboring points on a given point. We considered three types of

matrices: a Gabriel’s neighbor-based adjacency matrix (Wcont), a 5-nearest neighbor matrix (Wnn5),

and an inverse distance matrix (Wdinverse). Graphical representations of these matrices are provided

in Figures 6, 7, and 8 of Appendix A.

Since we are using gridded meteorological data which can lead to spatial correlation resulting in

significant impacts between neighboring regions [Auffhammer et al., 2013], we only present here the

results associated with the Wdinverse matrix, as it has the strongest explanatory power and promotes

the most intuitive economic interpretation. the Moran’s I test reveals a significant positive spatial

autocorrelation for all agricultural crops, both rainfed and irrigated. This indicates that agricultural

production in Morocco exhibits a strong spatial correlation, with regions of high or low agricultural

production tending to cluster together. Furthermore, a significant positive spatial autocorrelation is

found for both temperature and precipitation, confirming the spatial variability of Morocco’s climate.

This correlation can be attributed to various factors, including land quality suitability for specific

13

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 1 - Descriptive statistics.

Statistic Notation N Mean St. Dev. Min Max
Log_Rainfed_Cereals LogRainf_Cer 210 17.338 3.515 5.132 21.298
Log_Irrigated_Cereals LogIrrg_Cer 210 15.876 2.650 2.322 19.004
Log_Rainfed_Rosaceous LogRainf_Ros 210 13.755 2.426 7.622 17.462
Log_Irrigated_Rosaceous LogIrrg_Ros 210 16.572 2.365 7.868 19.865
Log_Rainfed_Market_Gardening LogRainf_MarkG 210 14.238 2.486 4.907 18.378
Log_Irrigated_Market_Gardening LogIrrg_MarkG 210 18.664 1.640 13.694 20.906
Log_Labor Loglabor 210 18.430 1.123 15.009 19.692
Log_Land LogLand 210 17.675 2.696 9.155 20.341
Log_Livestock LogLivestock 210 6.752 1.647 0.848 8.583
Log_Mean_Temperature LogTmean 210 3.782 0.233 2.911 4.147
Log_Total_precipitation LogRainf 210 10.194 0.981 7.460 12.563
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ered three types of matrices: a Gabriel’s neigh-
bor-based adjacency matrix (Wcont), a 5-nearest 
neighbor matrix (Wnn5), and an inverse distance 
matrix (Wdinverse). Graphical representations of 
these matrices are provided in Figures 6, 7, and 
8 of Appendix A.

Since we are using gridded meteorological data 
which can lead to spatial correlation resulting in 
significant impacts between neighboring regions 
(Auffhammer et al., 2013), we only present here 
the results associated with the Wdinverse matrix, as 
it has the strongest explanatory power and pro-
motes the most intuitive economic interpretation. 
The Moran’s I test reveals a significant positive 
spatial autocorrelation for all agricultural crops, 
both rainfed and irrigated. This indicates that 
agricultural production in Morocco exhibits a 
strong spatial correlation, with regions of high 
or low agricultural production tending to cluster 
together. Furthermore, a significant positive spa-
tial autocorrelation is found for both temperature 
and precipitation, confirming the spatial variabil-
ity of Morocco’s climate. This correlation can be 
attributed to various factors, including land qual-
ity suitability for specific crops, shared climatic 
characteristics with neighboring regions, effec-
tive farmer organization, and economies of scale.

4.3.2. Spatial Clustering Analysis: Evidence 
from LISA

While Moran’s I test effectively identifies 
global spatial autocorrelation, its limitation lies 
in its inability to provide insight into the local 

structure of this correlation. As Anselin (1995) 
points out, Moran’s I test offers a global per-
spective, neglecting to reveal the intricacies of 
localized spatial dependencies. To overcome 
this limitation, we employ the Local Indicator of 
Spatial Association (LISA) a technique that goes 
beyond global analysis.

The most commonly used LISA is the local 
Moran’s I, defined as follows:

 

crops, shared climatic characteristics with neighboring regions, effective farmer organization, and

economies of scale.

4.3.2 Spatial Clustering Analysis: Evidence from LISA

While Moran’s I test effectively identifies global spatial autocorrelation, its limitation lies in its

inability to provide insight into the local structure of this correlation. As Anselin [1995] points out,

Moran’s I test offers a global perspective, neglecting to reveal the intricacies of localized spatial

dependencies. To overcome this limitation, we employ the Local Indicator of Spatial Association

(LISA) a technique that goes beyond global analysis.

The most commonly used LISA is the local Moran’s I, defined as follows:

Ii = (yi − y)
∑
j

Wij(yj − y) (7)

LISA pinpoints significant clusters of similar values surrounding a specific location and also identifies

areas of spatial non-stationarity [Anselin, 1995], which deviate from the overall global pattern. In

our case study, LISA allows us to discern four distinct scenarios:

• HH: a High production region is surrounded by other High-production regions

• LL: a Low production region is surrounded by other Low-production regions

• HL: a High production region is surrounded by Low-production regions

• LH: a Low production region is surrounded by High-production regions

In the first two cases (HH and LL), local autocorrelation is positive while in the other cases (HL

and LH), local correlation is negative.

The Figure 3 below, provides spatial clustering patterns corresponding to the LISA index of

each agricultural production for the three rain-fed and irrigated crops respectively. The local test,

using the LISA index, reveals a positive local spatial autocorrelation for both irrigated and rainfed

cereals (Figures 3a and 3b below). This means that regions with high cereal production tend to

be surrounded by other regions with high production levels, which corresponds to the HH scenario

identified by LISA. In other words, we observe a spatial clustering in the northern regions of Morocco,

which exhibit high cereal production, in contrast to the southern regions that display a negative local

spatial autocorrelation. The latter indicates a spatial clustering of regions with low cereal production,

which tend to be surrounded by other regions with low production. This result confirms the idea

that favorable conditions for cereal production, such as water availability, irrigation infrastructure,

and suitable agricultural practices, are concentrated in the northern regions of the country.

The same observation is made for market gardening and rosaceous crops (Figures 3c, 3d, 3e and

3f below), but with a less marked intensity than for cereals. This means that there is a significant
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 (7)

LISA pinpoints significant clusters of similar 
values surrounding a specific location and also 
identifies areas of spatial non-stationarity (Anse-
lin, 1995), which deviate from the overall global 
pattern. In our case study, LISA allows us to dis-
cern four distinct scenarios:

• HH: a High production region is surrounded 
by other High-production regions

• LL: a Low production region is surrounded by 
other Low-production regions

• HL: a High production region is surrounded 
by Low-production regions

• LH: a Low production region is surrounded 
by High-production regions

In the first two cases (HH and LL), local au-
tocorrelation is positive while in the other cases 
(HL and LH), local correlation is negative.

Figure 3 provides spatial clustering patterns 
corresponding to the LISA index of each agri-
cultural production for the three rain-fed and ir-
rigated crops respectively. The local test, using 

Table 2 - Global spatial correlation test Moran’s I.

Variables Moran’s I statistic Standard deviation p-value
Rainfed Crops
Log_Rainfed_Cereals 0.269∗∗∗ 3.385 0.00035
Log_Rainfed_Market_Gardening 0.241∗∗ 2.0859 0.01849
Log_Rainfed_Rosaceous 0.318∗∗∗ 1.5486 6.002e−05

Irrigated Crops
Log_Irrigated_Cereals 0.225∗∗∗ 2.9762 0.0014
Log_Irrigated_Market_Gardening 0.257∗∗ 2.1866 0.0143
Log_Irrigated_Rosaceous 0.157∗∗∗ 2.3386 0.0096
Meteorological Variables
Average Precipitation 0.434∗∗∗ 3.296 0.00049
Average Temperature 0.306∗∗∗ 2.4901 0.0063
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the LISA index, reveals a positive local spatial 
autocorrelation for both irrigated and rainfed 
cereals (Figures 3a and 3b below). This means 
that regions with high cereal production tend to 
be surrounded by other regions with high produc-

tion levels, which corresponds to the HH scenario 
identified by LISA. In other words, we observe a 
spatial clustering in the northern regions of Moroc-
co, which exhibit high cereal production, in con-
trast to the southern regions that display a negative 

Figure 3 - Spatial clustering patterns of irrigated and rainfed crops using LISA in Moroccan regions (1999-2019). 

HH, HL indicate High production patterns with High and Low clustering characteristics; LL, LH indicate Low 
production patterns with Low and High clustering characteristics, respectively. Not Signif. indicates no clustering 
significance.
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local spatial autocorrelation. The latter indicates a 
spatial clustering of regions with low cereal pro-
duction, which tend to be surrounded by other 
regions with low production. This result con-
firms the idea that favorable conditions for cereal 
production, such as water availability, irrigation 
infrastructure, and suitable agricultural practic-
es, are concentrated in the northern regions of 
the country.

The same observation is made for market gar-
dening and rosaceous crops (Figures 3c, 3d, 3e 
and 3f), but with a less marked intensity than for 
cereals. 

This means that there is a significant spatial 
clustering in the northern regions, where market 

gardening and rosaceous crops show high pro-
duction. These regions tend to be surrounded by 
other regions with high production of the same 
crops, which corresponds to the HH scenario iden-
tified by LISA. However, there are also regions 
with low production of these crops that tend to be 
surrounded by other regions with high production, 
which corresponds to the LH scenario identified 
by LISA. If we take, for example, rainfed mar-
ket gardening (Figure 3d), we find that the re-
gions “Casablanca-Settat, Marrakech-Safi and 
Béni Mellal-Khénifra” exhibit high production 
of rainfed market gardening and tend to be sur-
rounded by other regions with high production 
of rainfed market gardening. In contrast, the 

Figure 4 - Spatial patterns of average precipitation and temperature in Morocco (1999-2019).
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indicates no clustering significance.
15

HH, HL indicate High production patterns with High and Low clustering characteristics; LL, LH indicate Low pro-
duction patterns with Low and High clustering characteristics, respectively. Not Signif indicates no clustering 
significance.
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“Drâa-Tafilalet” region is a region with low pro-
duction of rainfed market gardening, and it tends 
to be surrounded by other regions with high pro-
duction of rainfed market gardening.

However, for irrigated rosaceous crops (Figure 
3e), the local test reveals a negative spatial au-
tocorrelation. This means that regions with low 
production of irrigated rosaceous crops are sur-
rounded by regions with high production of irri-
gated rosaceous crops, which corresponds to the 
LH scenario identified by LISA. This particular 
spatial dynamic could be explained by the influ-
ence of specific restrictive conditions associated 
with these crops, such as water availability for 
rainfed market gardening or temperature and light 
requirements for irrigated rosaceous crops. More-
over, market pressures and competition could also 
play a role, with low-producing regions potential-
ly facing challenges in market access and profita-
bility, while high-producing regions benefit from 
organizational advantages and expertise.

The geographic concentration of crops in north-
ern Morocco is primarily driven by a well-defined 
climatic boundary separating a wetter north from 
a drier south. Figure 4 above illustrates the spa-
tial clustering patterns corresponding to the LISA 
index of temperature and precipitation variables, 
respectively. This climatic boundary is evident 
in the spatial variability of precipitation, which 
is more pronounced in the north (Figure 4a). In 
contrast, the south is characterized by an arid cli-
mate (Figure 4b). Spatial analysis confirms this 
climatic variability. The Moran’s I test reveals 
a significant positive spatial autocorrelation for 
both temperature and precipitation (Table 2), 
which is further supported by the local LISA test 
(Figure 5b and 5a). Regions in the south with 
high average temperatures tend to be surrounded 
by other regions with similar high temperatures 
(HH scenario), while the opposite is true for pre-
cipitation in the north. This positive local spatial 
autocorrelation for temperature in the south and 
precipitation in the north highlights the climatic 
differences that explain the concentration of crops 
in the north. Indeed, according to Ezzine et al. 
(2017) the northern part of Morocco is character-

3 http://www.apdn.ma/index.php?option=com_content&view=article&id=233&Itemid=227&lang=fr.

ized by a sub-humid Mediterranean-type climate, 
with an average annual rainfall of 1200 mm, 
which is favorable for agriculture, while, the 
southern part is characterized by a Saharan (dry) 
climate, with average annual rainfall of less than 
100 mm, which is not suitable for agricultural 
production. This diversity is due to the combi-
nation of several factors, namely its latitudinal 
location, the influence of the Atlantic Ocean and 
the Mediterranean Sea, and the influence of ele-
vation through Atlas and Rif mountains (Ezzine 
et al., 2017). The northern regions benefit from 
several favorable conditions for the development 
of agricultural production. Indeed, in the Tangi-
er-Tetouan-Al-Hoceima region, for example, the 
useful agricultural area represents nearly 38% of 
the total area. Thus this region, thanks to the large 
hydraulic basin of Loukkous, is endowed with a 
significant irrigated agricultural perimeter, whose 
proportion of irrigated land represents 10% of the 
Tangier-Tetouan region and 6% of the Taza-Al 
Hoceima-Taounate3 region. These physical char-
acteristics combined with the Mediterranean-type 
climate and oceanic influence, with a rainy season 
that lasts from October to March, are favorable to 
the production of this type of crops and explain 
why the northern regions, with high production of 
such crops, are surrounded by similar region with 
high production.

5. Estimation Results and Discussions

This section presents the results of estimating 
the impact of climate variability on agricultural 
production across 12 Moroccan regions (5.1). 
We then delve into a comprehensive discussion 
of these results, exploring their implications and 
highlighting the limitations of our study (5.2).

5.1.  Interpreting Estimation Results

This section delves into a detailed interpretation 
of the estimation results, examining the influence 
of both climatic and economic factors on agricul-
tural production in Morocco. We begin by dis-
cussing the specification tests and model selection 

http://www.apdn.ma/index.php?option=com_content&view=article&id=233&Itemid=227&lang=fr
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process employed to ensure the robustness and 
validity of our findings. Subsequently, we analyze 
the impact of climatic variables, particularly tem-
perature and precipitation, on the production of 
both rainfed and irrigated crops, emphasizing the 
significance of spatial autocorrelation in shaping 
these effects. We then explore the role of eco-
nomic variables, including labor, capital, and land 
area, in influencing agricultural production and 
reveal any disparities across different crop types

5.1.1. Specification Tests and Selection  
of the Appropriate Model

Following the practical bottom-up approach, 
we begin our specification with a non-spatial or-
dinary least squares (OLS) regression model as 
a reference (Elhorst, 2003). We performed a few 
specification tests tailored to the spatial panel 
data shown in Table 3 below. First, we used the 
classical Lagrange Multiplier (LM) and Robust 
Lagrange Multiplier (RLM) tests applied on the 

Table 3 - Pooled OLS estimation and tests for spatial autocorrelation.

Dependent variable
LogRainf_

Cer
LogIrrg_Cer LogRainf_

Ros
LogIrrg_

Ros
LogRainf_

MarkG
LogIrrg_
MarkG

(1) (2) (3) (4) (5) (6)
LogLabor −1.275∗∗∗ 0.059 −0.019 −0.056 −0.689 1.167∗∗∗

(0.375) (0.389) (0.393) (0.420) (0.565) (0.241)

LogLand 1.054∗∗∗ 0.085 0.364∗∗∗ 0.077 −0.033 0.037

(0.080) (0.083) (0.084) (0.090) (0.121) (0.052)

LogLivestock 1.013∗∗∗ 1.206∗∗∗ 0.201 0.865∗∗ 1.117∗∗ −0.065

(0.306) (0.317) (0.320) (0.342) (0.460) (0.196)

LogTmean −0.928∗ −2.355∗∗∗ 3.059∗∗∗ −4.045∗∗∗ 1.851∗∗ 1.240∗∗∗

(0.550) (0.571) (0.576) (0.616) (0.829) (0.353)

LogRainf 0.231∗ −0.291∗∗ 0.588∗∗∗ −0.244∗ 0.292 0.091

(0.125) (0.130) (0.131) (0.140) (0.189) (0.081)

Constant 16.529∗∗∗ 17.013∗∗∗ −11.247∗∗ 28.192∗∗∗ 10.009 −8.669∗∗

(5.251) (5.444) (5.495) (5.874) (7.910) (3.370)

Observations 210 210 210 210 210 210

R2 0.835 0.689 0.621 0.545 0.253 0.689

Adjusted R2 0.831 0.681 0.612 0.534 0.234 0.681
F Statistic  
(df = 5; 204) 206.876∗∗∗ 90.198∗∗∗ 66.985∗∗∗ 48.842∗∗∗ 13.799∗∗∗ 90.208∗∗∗

Hausman test: 14.697∗∗ 9.608∗ 749.47∗∗∗ 17.482∗∗∗ 16.064∗∗∗ 14.378∗∗

Spatial test Tests for spatial dependence on residuals

LM test: lml 0.626 15.219∗∗∗ 6.022∗∗ 0.956 3.590∗∗ 52.266∗∗∗

LM test: lme 20.33∗∗∗ 3.962∗∗ 7.492∗∗∗ 25.907∗∗∗ 3.485∗ 2.108

RLM test: Rlml 2.987∗ 23.3∗∗∗ 14.702∗∗∗ 1.134 10.248∗∗∗ 55.349∗∗∗

RLM test: Rlme 22.691∗∗∗ 12.044∗∗∗ 16.173∗∗∗ 26.085∗∗∗ 10.143∗∗∗ 5.191∗∗

Spatial Hausman 
test: 10.847∗∗ 12.345∗∗ 14.136∗∗ 16.274∗∗∗ 19.402∗∗∗ 23.188∗∗∗

Note: * significant at 10% level, ** significant at 5% level, *** significant at 1% level.
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error terms (LMρ) and spatial lags (LMδ) to de-
cide between the SEM, SAR, and the non-spatial 
model (Anselin et al., 1996). Generally, these 
tests reject the hypothesis of no spatial correla-
tion for the error terms and spatial offsets.

Indeed, the classical LMEρ and RLMEρ tests 
showed that the null hypothesis of no spatially au-
to-correlated error term is strongly rejected at the 
1% and 5% significance level while suggesting 
that the SEM specification is the most appropriate 
for all the crops studied. Next, the spatial Haus-
man test (SHT) was used to test the effectiveness 
of the spatial random effects estimator. The coef-
ficients related to the SHT test were highly sig-
nificant and showed that the fixed effect model 
is the most appropriate. Finally, all of these tests 
suggested that the specification that considers 
both spatial error autocorrelation and individual 
heterogeneity in a fixed-effect model (FE-SEM) 
is the most appropriate for our case study.

5.1.2. Impact of Climate Variability  
on Agricultural Production

The results of the FE-SEM model estimation 
for rainfed and irrigated crops are presented in 
Table 4. Moreover, for robustness, the results of 
the SAR estimator are also presented in Table 5 

in Appendix B. Examining the coefficients of the 
meteorological variables in the FE-SEM model, 
we observe a more significant impact of mete-
orological variables on agricultural production 
in Morocco. Furthermore, the FE-SEM model 
demonstrates that cereal production is highly sen-
sitive to temperature and precipitation. Indeed, 
the temperature coefficients exhibit a negative 
sign on the production of this crop. These coeffi-
cients indicate that, ceteris paribus, a 1% change 
in temperature generates a decrease of 1.149% 
and 2.469% in rainfed and irrigated production, 
respectively. The negative sign of the temperature 
variable coefficients is not surprising and signifies 
that high temperatures have detrimental effects 
on cereal production in Morocco. It is notewor-
thy that this sector still occupies nearly 60% of 
the total useful agricultural area, of which 90% is 
cultivated in rainfed areas (Ministry of Economy, 
2019). This concentration of cereals, particularly 
in unfavorable rainfed areas, makes it more vul-
nerable to climatic hazards, explaining the neg-
ative sign of the temperature coefficient. Conse-
quently, this vulnerability will persist.

Regarding precipitation coefficients, they ex-
hibit a positive sign for rainfed production and 
a negative sign for irrigated production. These 

Table 4 - Estimation results of spatial error model (SEM).

Dependent variables
LogRainf_

Cer
LogIrrg_Cer LogRainf_

Ros
LogIrrg_Ros LogRainf_

MarkG
LogIrrg_
MarkG

LogLabor −0.232∗ 1.330∗∗∗ −1.030∗∗∗ 2.080∗∗∗ −0.182 0.591∗∗∗

(0.067) (0.135) (0.258) (0.285) (0.195) (0.170)
LogLand 1.011∗∗∗ 0.180∗∗∗ 0.339∗∗∗ −0.119 −0.070 0.044

(0.068) (0.069) (0.077) (0.082) (0.104) (0.050)
LogLivestock 0.257 0.352∗∗ 0.728∗∗∗ −0.359 0.761∗∗∗ 0.2952∗

(0.157) (0.178) (0.249) (0.253) (0.251) (0.161)
LogTmean −1.149∗∗ −2.469∗∗∗ 2.911∗∗∗ −4.346∗∗∗ 2.505∗∗∗ 1.208∗

(0.487) (0.535) (1.063) (1.081) (0.764) (0.671)
LogRainf 0.578∗∗∗ −0.434∗∗∗ 0.866∗∗∗ 0.064 0.376∗∗ −0.002

(0.117) (0.123) (0.149) (0.143) (0.182) (0.101)
ρ −0.257∗∗∗ −0.593∗∗∗ −0.368∗∗∗ −0.266∗∗∗ −0.255∗∗∗ −0.193∗∗

(0.092) (0.093) (0.089) (0.062) (0.091) (0.092)
Observations 210 210 210 210 210 210

Note: * significant at 10% level, ** significant at 5% level, *** significant at 1% level.
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coefficients indicate that, ceteris paribus, a 1% 
change in precipitation generates an increase of 
0.578% in rainfed production and a decrease of 
0.434% in irrigated production, suggesting low 
efficiency of irrigation techniques. This ineffi-
ciency is partly linked to the issue of water re-
allocation. While drip irrigation is considered an 
efficient technology, it does not guarantee water 
savings at the watershed level, as it can affect 
return flows and therefore water availability for 
other users. Climate change, by accentuating the 
decrease in precipitation and increasing evapo-
ration, risks exacerbating this situation, creating 
increased competition for water and enhancing 
the risk of groundwater overexploitation. This 
overexploitation aggravates inequalities in access 
to groundwater, as more affluent farmers can 
continue to irrigate while others are forced to 
reduce or abandon their production. Furthermore, 
the lowering of groundwater levels makes drilling 
more expensive and pumps less efficient, reduc-
ing farmers’ profitability.

The results for irrigated rosaceous crops are not 
significantly different concerning climatic varia-
bles. For instance, irrigated rosaceous crop produc-
tion is highly sensitive to temperature, showing a 
negative coefficient indicating that, ceteris paribus, 
each 1% increase in temperature causes a decrease 
of 4.346% in irrigated rosaceous crop production. 
Conversely, the coefficient for the precipitation 
variable is not significant. This result highlights 
that irrigated rosaceous crops are more sensitive to 
thermal conditions than to precipitation. Tempera-
ture directly affects crop growth and development, 
and a rise in temperatures can lead to water stress, 
decreased pollination, and an increase in diseases 
and pests. Moreover, a rise in temperatures caus-
es an increase in plant transpiration as they seek 
to cool themselves by releasing water as vapor 
(Molle and Tanouti, 2017). Drip irrigation, while 
optimizing water input, is not always sufficient to 
compensate for this increase in transpiration, espe-
cially under water stress conditions. The depend-
ence of these crops on irrigation therefore makes 
them more vulnerable to temperature variations, as 
water availability is insufficient to offset negative 
effects, particularly increased transpiration (Molle 
and Tanouti, 2017).

On the other hand, the FE-SEM model shows 

that rainfed rosaceous crop production and mar-
ket gardening (rainfed and irrigated) are less 
vulnerable to climate change. Indeed, the coeffi-
cients of the “temperature” variable exhibit a pos-
itive sign for the agricultural production of these 
crops. The positive sign indicates that, ceteris par-
ibus, each 1% increase in temperature generates 
an increase of 2.911%, 2.505%, and 1.208% in 
the agricultural production of rainfed rosaceous 
crops and market gardening (rainfed and irrigat-
ed), respectively. This result can be explained by 
the fact that the positive effect of the temperature 
variable coefficient depends on other parameters 
specific to the crop and its environment, and that 
higher temperatures during the growing season 
could have a positive effect on the growth of cer-
tain crops. This suggests that these crops thrive 
in warm weather conditions and are therefore not 
highly sensitive to global warming.

This result is partially explained by the adap-
tation of crops and agricultural practices follow-
ing the GMP. This program has encouraged the 
adoption of more resistant and profitable crops, 
such as rosaceous crops and market gardening, 
and has promoted the use of drip irrigation. Drip 
irrigation can contribute to crop growth despite 
higher temperatures by ensuring optimal water 
supply. Additionally, rainfed rosaceous crops and 
rainfed market gardening naturally benefit from 
a certain resilience to the semi-arid climatic con-
ditions of Morocco. However, it is important to 
highlight that groundwater overexploitation and 
rising temperatures can eventually negatively af-
fect these crops. It is crucial to continue research 
and monitor the evolution of these crops in the 
face of climate variability to anticipate risks and 
adapt agricultural practices.

5.1.3. Spatial Error Autocorrelation  
and Spillover Effects

The spatial error autocorrelation coefficient, 
ρ, is negative and highly significant for all agri-
cultural productions, indicating the presence of 
spillover effects between Moroccan regions. This 
result supports the argument that unobserved fac-
tors are spatially correlated, even after controlling 
for factors such as weather and agricultural inputs. 
These unobserved factors include insufficient co-
hesion of agricultural public policies at the region-
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al level, creating disparities. The GMP has had a 
significant impact on Moroccan agriculture by en-
couraging drip irrigation and easing access to land. 
However, this policy, while aiming to modernize 
and develop agriculture, has generated significant 
negative effects on water resource management. 
Take the example of the Gharb region. The GMP 
has facilitated access to land owned by the state 
and the privatization of collective lands, attracting 
investors eager to develop intensive agricultural 
projects based on drip irrigation. At the same time, 
generous subsidies offered for drip irrigation have 
encouraged many farmers to exploit wells without 
authorization, increasing pressure on groundwater 
and exacerbating the overexploitation of the Gharb 
aquifer. This situation highlights a crucial prob-
lem of the impact of agricultural policies favora-
ble to one region on neighboring regions. Indeed, 
the concentration of investments and subsidies 
in the Gharb has led to increased competition for 
water resources, negatively affecting neighboring 
regions such as Loukkos and Doukkala. These 
regions, already facing problems of groundwater 
overexploitation, are seeing their situation deterio-
rate due to the decrease in return flows in aquifers, 
originating from areas where drip irrigation is prac-
ticed intensively.

Furthermore, poor farmer organization can ex-
clude smallholders, who lack resources and have 
unequal access to markets and modern agricultur-
al adaptation technologies. Certain unsustainable 
agricultural practices, such as overgrazing and 
deforestation, contribute to soil erosion and fertil-
ity loss. Moreover, excessive use of inputs, such 
as pesticides and fertilizers, exacerbates these 
problems. Furthermore, monoculture (cereals) 
over vast areas reduces plant biodiversity, while 
excessive irrigation and lack of drainage lead to 
soil salinization. Recurrent periods of drought 
put significant pressure on groundwater resourc-
es, making Moroccan agriculture more vulnerable 
to climate change. In other words, spatial error 
autocorrelation implies the possible presence of 
measurement errors that tend to propagate across 
aggregation unit boundaries, omitted variables, 
or unobserved shocks following a spatial pattern. 
Moreover, the existence of spatial autocorrelation 
could be explained by the different data scales 
and the aggregation process.

5.1.4. Impact of Economic Variables  
on Agricultural Production

Concerning economic variables, capital and 
labor factors have a statistically significant im-
pact on Moroccan agricultural production. The 
FE-SEM model shows that regional agricultural 
production is highly dependent on agricultural 
labor in Morocco. Indeed, the coefficients of 
this production factor exhibit a positive sign in-
dicating that, ceteris paribus, each 1% increase 
in agricultural labor generates an increase of 
1.330%, 2.080%, and 0.591% in the production 
of cereal, rosaceous, and irrigated market garden-
ing, respectively. Unexpectedly, however, labor 
seems to have a detrimental effect on some rainfed 
crops. Indeed, ceteris paribus, each 1% increase in 
agricultural labor generates a decrease of 0.232% 
and 1.030% in the production of rainfed cereals and 
rosaceous crops, respectively. This result appears 
unexpected at first glance.

The unexpected impact of labor on the pro-
duction of some rainfed crops can be explained 
by several factors. First, the structure of agricul-
tural employment in Morocco is dominated by 
self-employed workers and family businesses, 
often involving unpaid and unskilled labor. This 
situation is reinforced by the fact that the agri-
cultural sector faces an aging workforce, with a 
gradual decline in the working-age population 
in rural areas. Moreover, the harvest of these 
crops requires specific skills that workers do 
not always possess, leading to low productivi-
ty. Finally, the use of inadequate or poor-quality 
tools contributes to a decrease in production. It 
is therefore crucial to invest in worker training 
and improve the quality of tools used to increase 
labor productivity in the agricultural sector. The 
model predicts a significant positive impact for 
livestock (Draught animals), indicating that, ce-
teris paribus, each 1% increase in this production 
factor generates an increase of 0.352%, 0.728%, 
0.761%, and 0.295% in the production of irrigat-
ed cereals, rainfed rosaceous crops, and rainfed 
market gardening and irrigated market gardening, 
respectively. This demonstrates the crucial role of 
livestock in agriculture, explaining its traditional 
aspect in Moroccan regions. While for irrigated 
rosaceous crops, the model predicts a negative 
but non-significant impact for livestock, indicat-
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ing that, ceteris paribus, each 1% increase in this 
production factor generates a decrease of 0.359% 
in irrigated rosaceous crop production. Several 
factors can explain this negative impact. First, 
the trampling of livestock can compact the soil, 
reducing water infiltration and increasing runoff. 
This can create waterlogged conditions around the 
roots of rosaceous crops, promoting the develop-
ment of diseases and rot. Moreover, soil compac-
tion can degrade its structure, making rosaceous 
crops more vulnerable to erosion and water stress. 
Second, while animal manure provides nutrients 
to the soil, compaction can limit their availability 
for rosaceous crops. Excessive manure can also 
create a nutrient imbalance, increasing competi-
tion between rosaceous crops and other plant spe-
cies, and promoting the development of diseases. 
Finally, animal manure can contaminate irrigation 
water, impacting water quality and the health of 
rosaceous crops.

As for the contribution of the total useful ag-
ricultural area of Morocco, it has a positive 
impact, showing that, ceteris paribus, each 1% 
increase in this factor implies an increase of 
1.011%, 0.180%, and 0.339% in the agricultur-
al production of rainfed cereals, irrigated cereals 
and rainfed rosaceous crops, respectively. This 
result is explained by the policies of the GMP, 
which aimed to stimulate agricultural production 
by promoting the expansion of cultivated areas. 
The GMP has facilitated access to land, particu-
larly by encouraging the privatization of collec-
tive lands and allowing the purchase of public 
lands, thus attracting investors eager to develop 
intensive agricultural projects. Cereals and rosa-
ceous crops, being important crops in Morocco, 
have benefited from this expansion of cultivated 
areas. On the other hand, this result can be ex-
plained by the use of new technologies, selected 
seeds, and fertilizers, as well as the cultivation of 
virgin and fertile land such as forested areas and 
pastures, in addition to the cultivation of certain 
species intended for rainfed production in irri-
gated areas, such as cereals (Oulhaj et al., 2013). 
This expansion is directly linked to the adoption 
of drip irrigation, and the National Program for 
Irrigation Water Savings (PNEEI) has played a 
crucial role in this process. The ambitious goal of 
converting 550,000 hectares of gravity or sprin-

kler-irrigated land to drip irrigation in 15 years, 
accompanied by massive subsidies and technical 
support, has accelerated the transformation of 
Moroccan irrigated agriculture.

However, the coefficients for market garden-
ing (rainfed and irrigated) and irrigated rosaceous 
crops are not significant. This result can be ex-
plained by several factors related to the adoption 
of drip irrigation. First, drip irrigation, while al-
lowing for better water use, does not necessarily 
translate into a reduction in the amount of water 
consumed at the field level. Indeed, crop intensi-
fication, increased tree density, and the adoption 
of more water-demanding crops, often associat-
ed with this technology, can offset water savings 
achieved. Second, field evapotranspiration is not 
always affected by drip irrigation. The reduction of 
soil evaporation may be limited, and the increase in 
crop transpiration due to more frequent irrigation 
may even lead to an overall increase in evapotran-
spiration. Finally, the expansion of vegetable culti-
vation towards rainfed areas, where water remains 
the main limiting factor, can also play a role. In-
deed, the area dedicated to early market gardening, 
an essential component of market gardening, has 
increased by 42% between 2003-2007 and 2019, 
reaching 40,000 hectares. Vegetable cultivation is 
mainly concentrated in the regions of Souss-Mas-
sa, Rabat-Salé-Kénitra, Casablanca-Settat, and 
Tangier-Tetouan-Al Hoceima. Access to water in 
these regions is often a major obstacle, explaining 
why an increase in area is not always synonymous 
with an increase in production.

5.2.  Discussion of Results

This section delves deeper into the discussion 
of our study’s findings, analyzing the key factors 
that determine agricultural production in Moroc-
co. We begin by examining the spatial interde-
pendence of agricultural production, highlighting 
the presence of significant spillover effects be-
tween Moroccan regions (5.2.1). Next, we ex-
plore the sensitivity of different crops to climate 
variability (5.2.2). Subsequently, we examine 
the role of production factors and explore their 
impacts (5.2.3). Finally, we discuss the limita-
tions of our study and identify avenues for future 
research (5.2.4).
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5.2.1. Spatial Interdependence and Spillover 
Effects

Our findings highlight the presence of strong 
spatial interdependencies within the Moroccan ag-
ricultural sector, suggesting the need to consider 
spatial spillover effects when analyzing the impact 
of climate variability on agricultural production in 
Morocco. Indeed, a geographical concentration of 
agricultural production in the northern regions, 
confirmed by positive spatial autocorrelation 
(Moran’s I test) and the use of a FE-SEM mod-
el, which accounts for both spatial error auto-
correlation and heterogeneity between regions, 
shows that integrating the spatial dimension into 
econometric models and considering unobserved 
factors and regional disparities are crucial for a 
complete understanding of the Moroccan agri-
cultural sector and for developing more relevant 
policies. These conclusions are consistent with 
those obtained by other researchers (Chen et al., 
2016; Karahasan and Pinar, 2023; Schlenker et 
al., 2006; Vaitkeviciute et al., 2019). For exam-
ple, Chen et al. (2016) analyzed the impact of 
climate variability on agriculture in China using 
a spatial panel data model on crop yields, plant-
ed areas of major crops (corn and soybeans), and 
meteorological data for the years 2000 to 2009. 
Chen et al. (2016) showed that the presence of 
spatial correlation between counties can be ex-
plained by the existence of several factors, such 
as agricultural policies, production practices, and 
local characteristics, that have influenced yields 
similarly in neighboring counties.

More recently, Karahasan and Pinar (2023) 
analyzed the impact of climate change on the 
spatial distribution of agricultural production in 
Turkey between 2004 and 2019, using fixed-ef-
fects panel models while taking spatial aspects 
into account (SAR and SEM models). Kara-
hasan and Pinar (2023) showed that including 
spatial effects significantly improves the under-
standing of agricultural dynamics, highlighting 
the spatial heterogeneity of the impact between 
regions. Indeed, their results indicated that cli-
mate change has a variable effect depending on 
the region, with a greater impact in the northern 
and central areas dominated by agriculture. This 
finding highlights the inefficiency of “one-size-
fits-all” policies in mitigating the negative effects 

of climate change in topographies exhibiting sig-
nificant spatial dissimilarities. Thus, they suggest-
ed that climate change will significantly threaten 
the evolution of agricultural activities essential 
to regional development. Moreover, Karahasan 
and Pinar (2023) demonstrated that spatial spill-
over effects and heterogeneity will be crucial for 
designing climate change policies for rural and 
agricultural development. Therefore, local model 
analysis is essential for understanding these re-
gional variations and implementing targeted and 
effective solutions.

5.2.2. Sensitivity of Different Crops to Climate 
Variability

The FE-SEM model highlights the high sensi-
tivity of rainfed cereal production to temperature 
variations. These results align with the findings 
of several studies that shed light on the challeng-
es associated with climate change and water re-
source management. Simulation studies on the 
evolution of agricultural yields by Balaghi et al. 
(2016) have indeed shown that climate change 
will affect wheat and barley, which could expe-
rience a projected yield decrease of over 50% in 
many provinces by 2050. In light of these chal-
lenges, the approach employed by the CALE-
SA project (Developing Promising Strategies 
Using Analogue Sites in Eastern and Southern 
Africa) proves particularly relevant (Leal Filho 
and Mannke, 2011). This project, conducted in 
sub-Saharan Africa, where, like Morocco, nearly 
90% of basic food production comes from small 
rainfed agricultural systems, offers an innovative 
approach to agricultural adaptation to climate 
change. Using analogue sites, defined as areas ex-
hibiting the projected future climate conditions, 
the project has successfully identified promising 
adaptation strategies for rainfed agriculture in 
semi-arid and subhumid areas. Ex ante analyses 
coupled with field research have enabled the eval-
uation of the effectiveness of these strategies un-
der real conditions, providing tangible solutions 
for farmers grappling with the challenges of cli-
mate change (Leal Filho and Mannke, 2011). The 
lessons learned from the CALESA project present 
significant potential for Morocco, particularly in 
terms of developing adaptation strategies for fu-
ture climate conditions and strengthening the re-
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silience of agricultural systems against droughts 
and extreme temperatures.

Irrigated cereal and rosaceous crops are extreme-
ly vulnerable to climate variability, as they have 
experienced a significant decrease in production 
due to variations in temperature and precipitation. 
According to Abdelmajid et al. (2021), this de-
crease is explained by the increase in groundwater 
pumping and the risk of aquifer salinization. Addi-
tionally, the High Commission for Water, Forests, 
and the Fight Against Desertification estimates 
that soil salinization in Morocco affects almost all 
major irrigated areas. Oulhaj et al. (2013) estimate 
that 22,000 hectares of irrigated land in the prov-
inces of Zagora and Errachidia are affected by sa-
linization, which combines its effects with those of 
wind erosion. Thus, Fader et al. (2016) confirmed 
that Morocco could face difficulties in mitigating 
precipitation deficits through irrigation due to the 
projected decrease in water resources. Moreover, 
Moutawakkil (2009) highlighted that irrigation 
presents certain management shortcomings: dan-
gerous exploitation of groundwater, alarming 
degradation of water and soil resources, a pricing 
system that does not guarantee the balance of re-
curring water service costs, and a still low water fee 
recovery rate. Thus, these results can be explained 
on the one hand by the under-irrigation of nearly 
63% of irrigated areas, mainly those based on the 
gravity irrigation system that uses large amounts of 
water, especially since a large part is lost through 
evaporation, and on the other hand, by the low 
efficiency of irrigation techniques in nearly 50% 
of irrigated areas (Ministry of Economy, 2019). 
Moreover, Schyns and Hoekstra (2014) show that 
evaporation from storage reservoirs is the second 
most important form of surface or groundwater 
consumption in Morocco, after irrigated crop pro-
duction. Thus, the scarcity of surface or ground-
water on a monthly basis is severe in all river ba-
sins, and pressure on groundwater resources from 
abstractions and nitrate pollution is considerable 
in most basins (Schyns and Hoekstra, 2014). This 
suggests the rationalization of water resources and 
the adoption of water-saving irrigation techniques, 
which is a vital option to accompany the climate 
variability adaptation efforts undertaken as part of 
the GPM in Morocco. Indeed, Yuan et al. (2022) 
showed that the use of plastic mulch drip irrigation 

in the mountain-oasis-desert system of northwest-
ern China has positive climate impacts. This tech-
nique enables better water use by reducing evap-
oration losses and providing targeted irrigation to 
plants. This leads to increased crop productivity 
and more efficient use of water resources. More-
over, Schyns and Hoekstra (2014) showed that 
the most significant potential water savings can be 
achieved through the partial relocation of crops to 
basins where they consume less water and through 
the reduction of the water footprint of crops.

Contrary to cereal production, the FE-SEM 
model indicates that rainfed rosaceous crops and 
market gardening (both rainfed and irrigated) are 
less affected by climate change. These results 
can be explained by the efforts made by policy-
makers within the framework of the GPM to con-
tain the negative influence of the cereal sector on 
agricultural growth. Indeed, according to report 
of Ministry of Economy (2019), the transforma-
tion of the agricultural sector structure originates 
from the reorientation of agricultural strategies, 
since the early 2000s, towards better adaptation 
of agricultural production to the agro-climatic 
context. This evolution was further consolidated 
within the framework of the GPM, which rein-
forced support for crops more resilient to climate 
hazards, such as market gardening and rosaceous 
crops. For example, land-use projections for the 
Gharb indicate a shift from 127,000 hectares 
of cereals to crops such as olives, citrus fruits, 
fruits, sugar beets, and fodder, which require 
more water (ABH-Sebou, 2015). Thus, water 
conservation policies, to combat water shortag-
es and groundwater overexploitation, have led to 
a significant increase in the drip irrigation con-
version rate, from 10,000 hectares per year to 
50,000 hectares per year (El Gueddari and Arri-
fi, 2009). Indeed, this trend is reinforced by the 
fact that drip irrigation is often integrated into 
intensification strategies, leading to an increase 
in plantation density and a conversion to crops 
requiring more water. Studies conducted in Tadla 
(Kuper et al., 2012), Souss (BRLi et Agroconcept, 
2013), Haouz (Molle and Tanouti, 2017), and 
Saïss (Kuper et al., 2017) have confirmed this 
link between drip irrigation, intensification, and 
crop diversification, promoting the expansion of 
market gardening and fruit trees.
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5.2.3. Economic Variables Analysis’s and Their 
Impact on Moroccan Agriculture

Regarding economic variables, the FE-SEM 
model analysis reveals a strong dependence of re-
gional agricultural production in Morocco on ag-
ricultural labor, with a positive effect observed for 
irrigated crops and a negative effect observed for 
rainfed crops. These results align with the find-
ings of other studies, which highlight the strong 
dependence of farms on labor. Sraïri et al. (2018) 
distinguished two types of situations: small rain-
fed farms often favor livestock raising, which 
requires little land and capital but with limited 
gross margins, which could hinder the sector’s 
attractiveness for younger generations. Large 
irrigated farms, on the other hand, can diver-
sify their activities towards cash crops (market 
gardening, fruit trees), which requires increased 
reliance on external labor, positively impacting 
production and profitability. However, this depend-
ence on labor faces an underlying trend: the con-
stant decline in agricultural employment since 
1991, from 42.98% in 1991 to 32.36% in 2019, 
with an acceleration of the decline in recent years 
(Ministry of Economy, 2019). This situation can 
be partially explained by the demographic evolu-
tion of rural areas. According to Harbouze et al. 
(2019), the agricultural sector represented 72.9% 
of jobs in rural areas in 2016. The working-age 
population is expected to remain stable and then 
decline in rural areas until 2030, while the num-
ber of people over 65 will increase, which could 
weigh on the labor force available for agriculture. 
Moreover, employment in the Moroccan agricul-
tural sector is dominated by self-employed work-
ers or family businesses, with over 85% of them 
employing no or few employees. Additionally, 
unpaid employment, consisting of family helpers, 
accounts for over 50% of agricultural labor, high-
lighting the informal nature of work in the agricul-
tural sector and the blurred distinction between the 
family environment and employment. Finally, the 
harvesting of certain types of crops requires skills 
that workers do not typically possess, highlight-
ing the need for appropriate training. Furthermore, 
the use of inappropriate or poor-quality tools can 
affect production, highlighting the low labor pro-
ductivity in certain crops and the need to improve 
tools and worker skills.

Moreover, our FE-SEM model confirms the 
significant contribution of the capital represented 
by livestock (or draught animals) and the useful 
agricultural area of rainfed and irrigated crops 
to Moroccan agricultural production. The mod-
el highlights the importance of livestock for the 
production of irrigated cereals, rainfed rosaceous 
crops, and market gardening in Morocco, but sug-
gests a negative but non-significant impact on ir-
rigated rosaceous crops. These results align with 
other studies conducted in Morocco, such as those 
by Elhimdy and Chiche (1988) and Bansal et al. 
(1992), which both evaluated the performance of 
local animal breeds in single and double hitching. 
These studies highlight the dependence of the 
performance of livestock on several factors such 
as age, genetics, diet, health status, and handling 
during work (Elhimdy and Chiche, 1988). It is im-
portant to note that the results of these studies, as 
well as our FE-SEM model, suggest that the use 
of livestock can present challenges. For example, 
the adaptation of smaller and slower animals to 
faster and larger animals can lead to stress and re-
duced efficiency (Bansal et al., 1992). This could 
explain the negative (non-significant) impact ob-
served in our model for irrigated rosaceous crops. 
Further research could explore the economic and 
environmental implications of using livestock 
based on their types and agricultural techniques 
used, taking into account these key factors that 
influence their performance.

Regarding the useful agricultural area in Mo-
rocco, the FE-SEM model shows a positive 
impact on the production of cereals and rainfed 
rosaceous crops but not on market gardening and 
irrigated rosaceous crops. This result, although 
seemingly positive, is actually complex and can 
be explained by several factors. The increase in 
UAA in Morocco has mainly occurred on mar-
ginal lands previously used for livestock or for-
est (Oulhaj et al., 2013), which has contributed 
to land degradation and a decrease in yields on 
these lands brought into cultivation (El Jazouli et 
al., 2019; Ghanam, 2003; Harbouze et al., 2019; 
Simonneaux et al., 2015). The low productivity 
of irrigated crops, despite the increase in UAA, 
is due to poor water management, deficient pro-
duction techniques, and farm fragmentation 
(Kusi et al., 2023; Oulhaj et al., 2013). The ma-
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jority of farms located on marginal lands practice 
subsistence agriculture and are highly vulnerable 
to drought (Harbouze et al., 2019). Despite an in-
crease in UAA, Moroccan agriculture faces sig-
nificant challenges related to land degradation, 
low yields, and farm fragmentation, highlight-
ing the need for mitigation strategies focused on 
land and soil conservation, improving production 
techniques, and consolidating farms.

As for irrigated crops (market gardening and 
rosaceous), the productivity per hectare of irriga-
tion is low, and the cubic meter (m3) of water 
is poorly valued (40% of the area of large ir-
rigation perimeters is cultivated in cereals). The 
comparison of the productivity level per hectare 
remains one of the lowest compared to other 
countries (Oulhaj et al., 2013). In addition to this 
are deficient production techniques, the non-gen-
eralized use of selected seeds, and fertilization and 
phytosanitary treatments that are not always used 
optimally. Furthermore, this low productivity is 
due to the predominance of small farms (near-
ly 70% of UAA has an area of less than 2.1 hec-
tares), which often coexist with large, modern, 
more productive, and professionally organized 
farms. This significant fragmentation is the result 
of the multiplicity of legal regimes governing agri-
cultural land ownership (customary law, Islamic 
law, and positive law) and inheritance (Oulhaj 
et al., 2013). For its part, Ghanam (2003) high-
lights that in Morocco, the desertification process 
affects vast areas (over 90% of the territory) and 
is all the more pronounced as the climate is arid 
and the soils are vulnerable to erosion. Simon-
neaux et al. (2015) showed that even though pre-
cipitation is expected to decrease by 10% by the 
end of the 21st century, the change in temporal 
distribution would induce an increase in erosion 
of about 5 to 10%, assuming similar precipita-
tion intensities. El Jazouli et al. (2019) showed 
that the annual soil loss varied from 0 to 400 per 
pixel, with an average of 58, 66, and 142 t/ha/
an in 2003, 2013, and 2017, respectively. It is 
therefore very important for watershed manag-
ers to implement mitigation strategies focused on 
land and soil conservation, including their main-
tenance. Recent research by El Bakali et al. 
(2023) highlights the crucial role of financial 
incentives in promoting sustainable agricultural 

practices. Their systematic review demonstrated 
that financial incentives, such as subsidies for in-
puts and conservation practices, have a significant 
positive impact on the adoption of conservation 
agriculture (CA). These incentives contribute to 
improving crop yields and nutritional quality. Fur-
thermore, Toumi et al. (2021) studied the influence 
of good governance on food security in Morocco. 
Their study revealed that effective governance in 
the agricultural sector is crucial to ensure access 
to legumes. However, challenges related to coor-
dination and communication between stakehold-
ers hinder the full realization of its potential.

5.2.4. Study Limitations and Perspectives
The analysis of the impact of climate variabil-

ity on Moroccan agriculture is limited by a lack 
of accurate and detailed data. The availability of 
complete long-term historical data, particularly at 
the regional level, is restricted. This lack of data 
has forced us to focus on the production function 
approach developed by Deschênes and Greenstone 
(2007), which studies the short-term impact of cli-
mate variability rather than the long-term impact of 
climate change on Moroccan agriculture.

Moreover, data on key factors such as agricul-
tural land prices, growing degree days, agricul-
tural technical progress, fertilizer use, and soil 
fertility are uneven, limiting our ability to isolate 
their impacts from exogenous shocks, thus com-
plicating a thorough analysis. Furthermore, future 
projections of temperature and precipitation rely 
on climate change scenarios developed at the 
national level, lacking regional specificity. This 
lack of detailed local data makes it difficult to 
simulate the impacts of climate change and plan 
for effective long-term adaptation in the Mo-
roccan agricultural sector. Future research using 
data over a longer period to analyze the long-term 
impacts of climate change (Lobell et al., 2011; 
Nelson et al., 2010; Tao et al., 2006; Zhao et al., 
2017) would be valuable to better understand 
and anticipate the challenges and opportunities 
that the Moroccan agricultural sector will face in 
the decades to come.

On the other hand, the use of a spatial econo-
metric model based on a Cobb-Douglas function, 
which is limited by its rigidity of substitution and 
its specific form, raises questions about its ability 
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to capture the complexity of the agro-climatic sys-
tem. The limitations of the Cobb-Douglas function, 
notably its restriction in terms of flexibility, lead 
us to consider exploring more complex functions, 
such as the CES or Translog, in future research. 
While it offers a useful analytical framework for 
quantifying the effects of key variables, the cur-
rent model does not capture the complexity of the 
agro-climatic system in its entirety. For instance, 
our model does not take into account the direct 
influence of temperature on water availability in 
the soil, evapotranspiration, plant growth, and sen-
sitivity to diseases, interactions often exacerbated 
by periods of water deficit. Future research could 
explore bio-economic models, integrating explicit 
biological dynamics and a decision-making pro-
cess stemming from economic theory, as well as 
a link between these two elements. These models 
would allow for a better understanding of the com-
plex interactions between water use, agricultural 
production, and socioeconomic factors (Lokonon 
et al., 2019; Mouysset, 2023).

Finally, given that climate variability adap-
tation in agriculture is a complex process, it 
requires a combination of actions at the farm, 
market, institutional, and technological levels. 
Regional-level data masks significant variations 
at the farm level, which limits our analysis of the 
implementation of effective adaptation strategies, 
including crop diversification, water conservation, 
and access to credit and other resources. Jeder et 
al. (2021) showed, using a bottom-up approach, 
that socio-economic factors such as education 
level, land ownership, and membership in agri-
cultural development groups influence farmers’ 
perception and adaptation strategies. Future re-
search could explore the bottom-up approach in 
the study of effective and sustainable adaptation 
strategies to climate variability, considering the 
needs and perspectives of farmers for the internal 
and external environment of their activities.

6. Conclusion

This paper analyzes the impact of climate var-
iability on agricultural production in Morocco 
between 1999 and 2019 using a production func-
tion approach based on spatial panel data. This 
study is the first of its kind to employ recent and 

disaggregated data, both at the regional level 
(12 Moroccan regions) and by major agricultural 
products (cereals, market-gardening crops, and 
rosaceous fruits), as well as by production mode 
(rain-fed and irrigated). To better understand the 
impacts of climate variability on Moroccan agri-
culture and its regional variations, preliminary 
spatial autocorrelation analyses were conducted. 
This initial step was followed by an in-depth spa-
tial panel data analysis, enabling the identifica-
tion of specific climate and agricultural effects on 
irrigated and rain-fed crops for all three agricul-
tural products. This approach allows for captur-
ing the spatial heterogeneity of climate variability 
impacts on Moroccan agriculture across regions 
and crop types.

Spatial clustering analysis, encompassing map-
ping and both global and local Moran’s I tests, 
reveals a concentration of agricultural production 
and rainfall in the northern regions of Morocco. 
The Moran’s I tests consistently yielded positive 
and significant results for all agricultural prod-
ucts, indicating a strong positive spatial auto-
correlation. This signifies that regions with high 
agricultural production are spatially clustered 
together, with neighboring areas also exhibiting 
high production levels.

Spatial panel data specifications suggest that a 
model considering both spatial error autocorrela-
tion and individual heterogeneity in a fixed effects 
framework (FE-SEM) is most appropriate for this 
case study. Results from our FE-SEM model 
show at the regional level that Moroccan agri-
culture is heavily dependent on the direct effects 
of temperature and precipitation for all goods 
considered. Notably, these results confirm that 
the impact of climate variability on agricultural 
production differs across crops. Cereal produc-
tion (rain-fed and irrigated) is highly sensitive to 
climate variability compared to other rosaceous 
and market gardening (rain-fed and irrigated). Ad-
ditionally, these findings confirm that the impact 
of climate variability on irrigated crops differs 
from that on rain-fed crops. The latter are less 
vulnerable to climate change, suggesting limited 
effectiveness of irrigation techniques. This chal-
lenges the efforts made in the context of public 
agricultural policies (GMP) in Morocco towards 
climate variability adaptation in irrigation.
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Furthermore, spatial analysis offers novel in-
sights. It reveals the significance of explicitly 
accounting for spatial effects between Moroccan 
regions. The analysis demonstrates the presence 
of significant spatial heterogeneity, indicating the 
existence of unobservable factors that are nega-
tively spatially correlated, even after controlling 
for variables such as weather and agricultural in-
puts. These unobservable factors, such as tech-
nology, agricultural policies, use of similar pro-
duction practices, existence of dams, organized 
farmers, and economies of scale, may contribute 
to spatial correlation.

In other words, spatial error autocorrelation 
implies the possibility of measurement errors that 
tend to spread across aggregation unit boundaries, 
omitted variables, or unobserved shocks follow-
ing a spatial pattern. Additionally, the existence 
of spatial autocorrelation might be explained by 
varying data scales and the aggregation process.

The findings of this paper raise concerns about 
the sustainability of agricultural production growth 
in Morocco and question the interdependencies 
between food availability and the policies adopt-
ed within the GMP framework. To mitigate the 
impact of climate on agriculture, appropriate 
measures should be implemented, such as imple-
menting water conservation policies by encour-
aging investments from the public and private 
sectors targeting support for smallholder farmers, 
specializing in high-yielding, water-efficient, 
and drought-resistant crop varieties. Improving 
workforce skills and capital efficiency through 
the promotion of agricultural research and devel-
opment, and implementing appropriate fiscal and 
environmental policies, as well as developing re-
gional policies to enhance the benefits of dams 
and groundwater.
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Appendix B - SAR Model’s specification and results

Spatial Autoregressive Model (SAR): This 
model is developed by Anselin et al. (2008) and 
improved by Elhorst et al. (2010) to consider 
directly the spatial dependence of the explained 
variable on the explanatory variables and the er-
ror term for the case of panel data.

  (8)

where Yit is the dependent variable for cross-sec-
tional i at time t (i = 1, ..., N ; t = 1, ..., T ). 
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Yit = λ
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ωijYjt +Xitβ + µi + νt + εit, (8)

where Yit is the dependent variable for cross-sectional i at time t (i = 1, ..., N ; t = 1, ..., T ).
∑N

k=1 ωikYkt

is the interaction effect of the dependent variable Yit with the dependent variables Yit in neighboring
units, where ωik is the i, jth element of a prespecified non negative N × N spatial weights matrix W
describing the arrangement of the spatial units in the sample, the response parameter of these endogenous
interaction effects, and λ : the spatial autoregressive coefficient. Xit : 1 ×K is the vector of exogenous
variables. β is matching 1×K vector of fixed but unknown parameters. µg is individual fixed effect, λt

is time fixed effect and εit is vector of the idiosyncratic error term.

Table 5: Estimation results of spatial autoregressive model (SAR)

Dependent variable:

LogRainf_Cer LogIrrg_Cer LogRainf_Ros LogIrrg_Ros LogRainf_MarkG LogIrrg_MarkG

(1) (2) (3) (4) (5) (6)

LogLabor −1.259∗∗∗ 1.330∗∗∗ −0.526∗ 2.080∗∗∗ −1.628∗∗∗ 1.183∗∗∗

(0.317) (0.135) (0.393) (0.285) (0.405) (0.236)

LogLand 0.921∗∗∗ 0.180∗∗∗ 0.131∗ 0.040 −0.033 0.0014
(0.070) (0.069) (0.070) (0.084) (0.087) (0.053)

LogLivestock 1.055∗∗∗ 0.352∗∗ 0.615∗∗ 1.281∗∗∗ 1.738∗∗∗ −0.082
(0.263) (0.178) (0.251) (0.302) (0.332) (0.191)

LogTmean −0.888∗ −2.469∗∗∗ 7.746∗∗∗ −7.650∗∗∗ 2.897∗∗∗ 2.630∗∗∗

(0.468) (0.535) (1.0009) (1.257) (0.602) (0.775)

LogRainf 0.444∗∗∗ −0.434∗∗∗ 0.687∗∗∗ −0.332∗∗ −0.037 0.107
(0.124) (0.123) (0.134) (0.157) (0.156) (0.099)

Constant 19.298∗∗∗ 15.348∗∗∗ −15.959∗∗ 52.456∗∗∗ 36.077∗∗∗ −11.586∗∗∗

(4.313) (5.152) (4.757) (5.872) (5.614) (3.681)

λ −0.191∗∗∗ 0.028 −0.492∗∗∗ −0.139∗∗∗ −0.864∗∗∗ −0.163∗∗∗

(0.059) (0.028) (0.071) (0.106) (0.079) (0.070)

Observations 210 210 210 210 210 210

Note: ∗ significant at 10% level, ∗∗ significant at 5% level, ∗∗∗ significant at 1% level
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pendent variable Yit with the dependent variables 
Yit in neighboring units, where ωik is the i, jth 
element of a prespecified non negative N × N 
spatial weights matrix W describing the arrange-
ment of the spatial units in the sample, the response 
parameter of these endogenous interaction effects, 
and λ: the spatial autoregressive coefficient. Xit: 
1 × K is the vector of exogenous variables. β is 
matching 1 × K vector of fixed but unknown pa-
rameters. µg is individual fixed effect, λt is time 
fixed effect and εit is vector of the idiosyncratic 
error term.
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Table 5 - Estimation results of spatial autoregressive model (SAR).

Dependent variables
LogRainf_

Cer
LogIrrg_Cer LogRainf_

Ros
LogIrrg_Ros LogRainf_

MarkG
LogIrrg_
MarkG

(1) (2) (3) (4) (5) (6)
LogLabor −1.259∗∗∗ 1.330∗∗∗ −0.526∗ 2.080∗∗∗ −1.628∗∗∗ 1.183∗∗∗

(0.317) (0.135) (0.393) (0.285) (0.405) (0.236)
LogLand 0.921∗∗∗ 0.180∗∗∗ 0.131∗ 0.040 −0.033 0.0014

(0.070) (0.069) (0.070) (0.084) (0.087) (0.053)
LogLivestock 1.055∗∗∗ 0.352∗∗ 0.615∗∗ 1.281∗∗∗ 1.738∗∗∗ −0.082

(0.263) (0.178) (0.251) (0.302) (0.332) (0.191)
LogTmean −0.888∗ −2.469∗∗∗ 7.746∗∗∗ −7.650∗∗∗ 2.897∗∗∗ 2.630∗∗∗

(0.468) (0.535) (1.0009) (1.257) (0.602) (0.775)
LogRainf 0.444∗∗∗ −0.434∗∗∗ 0.687∗∗∗ −0.332∗∗ −0.037 0.107

(0.124) (0.123) (0.134) (0.157) (0.156) (0.099)
Constant 19.298∗∗∗ 15.348∗∗∗ −15.959∗∗ 52.456∗∗∗ 36.077∗∗∗ −11.586∗∗∗

(4.313) (5.152) (4.757) (5.872) (5.614) (3.681)
λ −0.191∗∗∗ 0.028 −0.492∗∗∗ −0.139∗∗∗ −0.864∗∗∗ −0.163∗∗∗

(0.059) (0.028) (0.071) (0.106) (0.079) (0.070)
Observations 210 210 210 210 210 210

Note: * significant at 10% level, ** significant at 5% level, *** significant at 1% level




