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Abstract
The study investigates the environmental impact of the EU agri-food sector, focusing on emissions 
per capita and their relationship with economic growth through a Bayesian Vector Autoregression 
(BVAR) framework. It reveals that greening efforts in the sector have not been matched by sufficient 
economic growth, challenging the Environmental Kuznets Curve (EKC) hypothesis. Despite prog-
ress in sustainable practices, economic expansion has fallen short of offsetting environmental costs, 
with imports playing a critical role. The Carbon Border Adjustment Mechanism (CBAM) under the 
EU Green Deal highlights the need to address trade-related emissions. The study calls for future 
research to develop a comprehensive index incorporating diverse variables to better assess sustain-
ability efforts in the agri-food sector.
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1.  Introduction

The modern way of life worldwide exerts in-
creasing pressure on natural resources, height-
ening concerns about their depletion. Rapid 
population growth and the intensification of 
industrial and agricultural production amplify 

these concerns, particularly in light of projec-
tions that global food production must double 
by 2050 to meet the needs of a population ex-
pected to reach approximately 9.8 billion by 
2050 and 11.2 billion by 2100. These pressures 
are exacerbated by inefficiencies and losses in 
the agri-food supply chain, contributing to food 
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waste and environmental degradation. Accord-
ing to FAO, one-third of the world’s food is lost, 
impacting 800 million people suffering from 
hunger, with Europe alone generating 88 mil-
lion tons of food waste annually. Despite these 
challenges, the existing literature addressing 
the intersection of green practices, technologi-
cal advancements, and economic growth in the 
agri-food sector remains limited. Current studies 
largely focus on consumer behavior and demand 
for environmentally conscious products. Limit-
ed work examines the broader systemic changes 
required to balance economic growth with en-
vironmental sustainability, particularly through 
innovative methodologies or the integration of 
technology with green practices. Furthermore, 
the interdependencies between green supply 
chains, economic efficiency, and sustainability 
goals are underexplored, especially concerning 
how policy frameworks like the EU’s Common 
Agricultural Policy (CAP) and global initiatives 
like the Green Deal address these challenges.

This work aims to bridge this gap by analyz-
ing how green practices, coupled with modern 
technology, can transform the agri-food sector 
to achieve eco-efficiency. Eco-efficiency, a term 
popularized by Schaltegger and Sturm in 1992, 
links economic and environmental performance 
by emphasizing sustainable value creation while 
reducing environmental harm. The study further 
examines how technological paradigms, such as 
precision agriculture, can enhance productivity 
and profitability without exacerbating environ-
mental degradation. Additionally, it evaluates 
policy impacts, particularly those stemming 
from the CAP (2023-2027) and Green Deal, 
on agri-food sector sustainability. The novelty 
of this study lies in its methodological and an-
alytical approach. Employing advanced tech-
niques such as Bayesian Vector AutoRegression 
(BVAR), it investigates the economic and en-
vironmental interlinkages within the agri-food 
sector. The study uniquely considers the role 
of import indices in the context of the Green 
Deal’s Carbon Border Adjustment Mechanism, 
a measure yet to be widely implemented in the 
sector. Unlike prior studies focusing narrowly 
on producer behavior or consumer demand, this 
research adopts a systemic view, encompassing 

supply chain coordination, trade liberalization 
impacts, and policy frameworks to propose ac-
tionable pathways for sustainable development 
in the agri-food sector.

2.  Existing Literature

Current agri-food systems face multifacet-
ed challenges that necessitate urgent reform to 
achieve global food security and sustainability. 
Food insecurity and malnutrition persist, par-
ticularly in low- and middle-income countries 
(LMICs), where limited resources and ineffi-
cient agricultural practices exacerbate systemic 
vulnerabilities. Compounding these issues are 
entrenched profit-driven models that resist the 
adoption of sustainable practices, prioritizing 
short-term economic gains over long-term eco-
logical stability. Climate change, coupled with 
economic crises and unpredictable environmen-
tal conditions, underscores the critical need for 
systemic transformation in the agri-food sector 
(FAO, 2022; IPCC, 2023).

The inefficiencies of current agri-food sys-
tems contribute significantly to food waste and 
environmental degradation. Globally, one-third 
of food production is lost or wasted, affecting 
approximately 800 million people who expe-
rience hunger. In Europe alone, food waste 
through the supply system amounts to 88 mil-
lion tons annually, highlighting the scale of inef-
ficiency (European Commission, 2022). LMICs 
face additional challenges, including inadequate 
infrastructure, limited technological access, and 
economic constraints that hinder their capacity 
to implement sustainable agricultural practices 
(Godfray et al., 2021).

Climate change presents a profound threat 
to global agriculture, with rising temperatures, 
shifting growing seasons, and extreme weath-
er events disrupting food production patterns. 
The adverse effects of climate change are par-
ticularly pronounced in LMICs, where adaptive 
capacity is limited (IPCC, 2023). Economic cri-
ses and public health emergencies, such as the 
COVID-19 pandemic, further exacerbate these 
vulnerabilities, revealing the fragility of global 
food systems (Benton & Bailey, 2022). Collec-
tively, these challenges necessitate a transforma-
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tive approach that integrates sustainability into 
every aspect of the agri-food sector.

International initiatives, such as the Sustainable 
Development Goals (SDGs), and regional pol-
icies, including the European Union’s Common 
Agricultural Policy (CAP) and the Green Deal, 
provide critical frameworks for addressing these 
issues. The SDGs, particularly Goals 2 (“Zero 
Hunger”) and 12 (“Responsible Consumption 
and Production”), advocate for systemic reform 
to enhance sustainability, equity, and resilience 
in food systems (UN, 2023). The CAP (2023-
2027) allocates significant resources—approx-
imately 23 billion euros—to promote environ-
mentally friendly practices, focusing on climate 
change mitigation and biodiversity conservation. 
The Green Deal aims to transition Europe into a 
sustainable, resilient, and digital economy, with 
measures such as the Carbon Border Adjustment 
Mechanism designed to reduce carbon leakage 
and promote global adoption of sustainable prac-
tices (European Commission, 2023).

Technological innovation plays a pivotal role 
in transforming agri-food systems. Precision ag-
riculture, leveraging data analytics, sensors, and 
automation, has demonstrated substantial poten-
tial to enhance productivity while minimizing 
environmental impacts (Gebbers & Adamchuk, 
2023). Renewable energy integration, intelli-
gent agricultural equipment, and the adoption of 
bio-pesticides and organic fertilizers represent 
essential advancements for achieving sustain-
ability (Pretty et al., 2023). Digital technologies, 
including blockchain, artificial intelligence, and 
machine learning, further optimize supply chain 
efficiency, enhance transparency, and reduce 
waste (Tian, 2023). These technologies collec-
tively facilitate the transition to eco-efficient 
systems that balance economic growth with en-
vironmental preservation.

Abbate et al. (2023) emphasize the dual tran-
sition towards digitalization and sustainability 
within the agri-food sector, identifying the crit-
ical role of technological advancements in ad-
dressing systemic inefficiencies and reducing 
environmental footprints. Similarly, Belaud et 
al. (2019) highlight the potential of Big Data 
applications in promoting sustainability through 
better by-product management in supply chains.

Industry 4.0 technologies, such as automation 
and IoT, are pivotal in enabling these transforma-
tions. Ojo et al. (2018) discuss the implications of 
Industry 4.0 for sustainable food supply chains, 
stressing its role in improving traceability and re-
ducing food loss. Qian et al. (2020) further elab-
orate on food traceability systems from diverse 
stakeholder perspectives in the European Union 
and China, underscoring its global relevance.

Despite the transformative potential of these 
technologies, their adoption remains uneven 
across regions, presenting significant challeng-
es. Low-income countries face infrastructural 
deficits, such as inadequate internet connectivity, 
lack of electrification, and high costs associated 
with digital tools, which hinder the deployment 
of advanced technologies and exacerbate global 
inequities in agricultural productivity (Lipper et 
al., 2017). Smallholder farmers, who constitute 
a significant portion of global agricultural pro-
ducers, often lack access to financial resourc-
es, technical expertise, and training required to 
adopt digital solutions (Ferroni & Zhou, 2017). 
Without targeted interventions, these disparities 
are likely to persist. Additionally, some innova-
tions remain in developmental stages or require 
customization to address diverse agroecological 
contexts, which limits their scalability and rele-
vance to different farming systems.

The socio-economic implications of digital 
transformation in agriculture are profound, of-
fering both opportunities and risks. AI-based 
demand forecasting optimizes supply chains by 
aligning production with consumption patterns, 
thereby reducing food waste and leading to cost 
savings and environmental benefits (Chen et al., 
2020). Digital platforms provide access to new 
markets, financial services, and supply chain 
information, empowering farmers and agribusi-
nesses. However, the shift toward technolo-
gy-intensive farming risks marginalizing small-
er farmers who lack the means to compete with 
larger agribusinesses. This underscores the need 
for inclusive policies to ensure equitable benefits 
from these advancements (Pingali et al., 2019).

Sustainability remains a cornerstone of digital 
transformation in agri-food systems. Innovations 
offer promising avenues to minimize the envi-
ronmental footprint of agriculture. Precision irri-



40

NEW MEDITNEW MEDIT N. 2 2025

gation and AI-driven crop monitoring contribute 
to lower emissions by optimizing resource use. 
Research indicates potential reductions of up to 
20% in greenhouse gas emissions (Rose et al., 
2021). Blockchain technology supports com-
pliance with environmental standards through 
transparent monitoring and smart contracts, in-
centivizing sustainable practices across supply 
chains (Feng et al., 2020).

The convergence of digital transformation and 
sustainability represents a dynamic and evolv-
ing frontier. Realizing the full potential of these 
innovations will require concerted efforts. Gov-
ernments and international organizations must 
develop frameworks that encourage technology 
adoption while protecting the interests of small-
holder farmers. Subsidies, tax incentives, and 
funding for infrastructure development can ad-
dress existing gaps. Collaborative efforts among 
technologists, agronomists, environmental scien-
tists, and policymakers are essential to create in-
tegrated solutions. Investments in education and 
training programs will enable farmers to leverage 
digital tools effectively, fostering widespread 
adoption and equitable benefits. By aligning 
technological advancements with sustainability 
objectives, the digital transformation of agri-food 
systems has the potential to revolutionize global 
agriculture, ensuring food security, economic de-
velopment, and environmental stewardship.

The concept of eco-efficiency, which empha-
sizes the integration of economic value creation 
with environmental preservation, offers a guiding 
framework for addressing these challenges. Empir-
ical studies demonstrate that eco-efficient practices 
can significantly reduce greenhouse gas emissions, 
enhance resource efficiency, and improve econom-
ic resilience (Stern, 2023). However, achieving 
eco-efficiency requires a paradigm shift among 
industry stakeholders, prioritizing long-term value 
creation and sustainability over immediate profit-
ability (Schaltegger & Sturm, 2023).

Empirical studies underscore the transforma-
tive potential of eco-efficient practices in ad-
dressing the interconnected challenges of envi-
ronmental sustainability and economic viability. 
Such practices have been shown to significantly 
reduce greenhouse gas emissions, enhance re-
source efficiency, and strengthen economic re-

silience (Stern, 2023). For instance, innovations 
in waste-to-energy systems, precision manufac-
turing, and circular economy models contribute 
to reduced resource depletion and lower envi-
ronmental footprints. Research highlights that 
industries adopting these strategies report not 
only a decrease in operational costs but also an 
improvement in market competitiveness, as con-
sumers increasingly demand sustainable prod-
ucts and services (Porter & Kramer, 2023).

Achieving eco-efficiency, however, requires 
more than incremental adjustments; it necessi-
tates a profound paradigm shift among indus-
try stakeholders. Organizations must prioritize 
long-term value creation, which balances prof-
itability with environmental stewardship and 
social responsibility. This shift often involves 
rethinking traditional business models to incor-
porate principles of sustainability at every stage, 
from product design to end-of-life management 
(Schaltegger & Sturm, 2023). Effective adoption 
of eco-efficiency also depends on fostering a 
culture of innovation, where sustainability-driv-
en solutions are incentivized and supported.

The role of policy frameworks and regulatory 
mechanisms is critical in driving this transfor-
mation. Governments and international bodies 
must establish supportive policies, such as tax 
incentives for green technologies, subsidies for 
renewable energy adoption, and stringent emis-
sions regulations. These measures create an en-
abling environment for industries to align their 
objectives with broader sustainability goals. 
Public-private partnerships can further amplify 
these efforts by mobilizing resources and facili-
tating knowledge sharing, accelerating the tran-
sition to eco-efficient practices (Bocken et al., 
2023; Rochas-Serano et al., 2024).

Education and stakeholder engagement are also 
pivotal. Building awareness among consumers, 
suppliers, and employees about the benefits of 
eco-efficiency fosters collective action. Trans-
parent communication and reporting on sustain-
ability performance, guided by frameworks such 
as the Global Reporting Initiative (GRI) and the 
Task Force on Climate-related Financial Disclo-
sures (TCFD), ensure accountability and rein-
force trust among stakeholders (Elkington, 2023).

For EU recently, the adoption of precision ag-
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riculture within the EU has grown significant-
ly, as a means of ecoefficiency aligning closely 
with the EU’s sustainability goals while it was 
spurred by supportive policies like the Common 
Agricultural Policy (CAP) and the European 
Green Deal. CAP has encouraged farmers to im-
plement sustainable and resource-efficient prac-
tices, including variable-rate application systems 
and remote sensing tools. This shift is further 
supported by the Horizon Europe program, 
which funds innovative projects such as Smart-
AgriHubs to develop scalable and adaptive solu-
tions for the region’s diverse agricultural needs. 
As a result, precision agriculture adoption across 
the EU is projected to reach over 25% of farms 
by 2025, with a compound annual growth rate 
exceeding 12% (European Commission, 2023).

The precise application of water, fertilizers, and 
pesticides minimizes waste and runoff, preserving 
soil health and promoting biodiversity. A recent 
study by the Joint Research Centre (JRC) found 
that precision irrigation reduced water use by 
20% without compromising crop yields. Further-
more, practices such as controlled traffic farming 
and optimized nutrient management contribute 
to a reduction in greenhouse gas emissions, sup-
porting the European Green Deal’s objective of 
achieving climate neutrality by 2050.

In addition, the EU’s dependency on agricul-
tural imports by improving domestic production 
efficiency and supply chain resilience. Enhanced 
yield predictability and optimized resource man-
agement make the EU more self-sufficient in 
critical commodities, such as grains, oilseeds, 
and proteins. In a global context characterized 
by geopolitical uncertainties and trade disrup-
tions, these advancements bolster the EU’s food 
security. Additionally, blockchain technology 
integrated into precision farming enhances sup-
ply chain transparency, enabling traceability 
and reinforcing consumer trust in sustainably 
produced EU goods. This combination of inno-
vation and sustainability has strengthened the 
EU’s position as a global leader in exporting 
high-quality agricultural products.

While existing literature has explored various 
aspects of sustainability in the agri-food sector, 
significant gaps remain. Research on the interde-
pendencies between green practices, technologi-

cal innovation, and economic growth is limited, 
particularly regarding their combined impact on 
global trade and supply chain dynamics. Ad-
ditionally, the role of policy frameworks, such 
as the Green Deal and CAP, in shaping interna-
tional trade and sustainability outcomes requires 
further exploration (Vermeir & Verbeke, 2023).

This study addresses these gaps by employ-
ing advanced quantitative methodologies to 
analyze the economic and environmental in-
terlinkages within the agri-food sector. By ex-
amining the role of policy measures, such as 
the Carbon Border Adjustment Mechanism and 
import indices, this research provides a com-
prehensive understanding of how internation-
al trade and sustainability goals intersect. The 
findings aim to inform policymakers and in-
dustry stakeholders on actionable pathways to 
achieve a resilient, sustainable agri-food sector 
capable of meeting future demands while safe-
guarding environmental integrity.

The paper is organized as follows: section 2 de-
scribes the data and the methodology employed, 
section 3 highlights the results of the methodol-
ogy, section 4 discusses the results and the lastly 
section 5 presents the conclusions and policy im-
plications, specifying the scientific value, practi-
cality, as well as the limitations of the study.

3.  Data - Methodology

3.1.  Data

The objective of this manuscript is to achieve 
its aim by developing a model that integrates key 
factors, including carbon emissions generated 
by the agri-food sector, value added per capita, 
and imports within the EU or the specific sector 
under review. In alignment with the greening 
objectives mandated by the Common Agricul-
tural Policy (CAP), this study aims to model and 
estimate the relationship between the sector’s 
greening initiatives and its economic growth. 
The research builds a theoretical foundation by 
exploring eco-efficiency, which focuses on align-
ing economic output with reduced environmental 
impact, and the Environmental Kuznets Curve 
(EKC), which suggests that environmental deg-
radation initially rises with economic growth but 
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eventually declines at higher income levels (Pan-
ayotou, 1993; Schaltegger & Sturm, 1990).

While eco-efficiency emphasizes optimizing 
the ratio of economic output to environmental 
impact through deliberate actions and techno-
logical innovation, the EKC examines the trajec-
tory of environmental degradation across stag-
es of economic development. Together, these 
frameworks offer complementary perspectives 
on the dynamics of environmental and econom-
ic sustainability. Eco-efficiency underscores the 
necessity of proactive measures to reduce en-
vironmental impact, challenging the optimistic 
assumption inherent in the EKC that economic 
growth alone will eventually lead to reduced en-
vironmental degradation. By prioritizing inten-
tional strategies and innovations, eco-efficiency 
addresses the urgent need for sustainable prac-
tices in ways that the EKC framework, reliant 
on natural economic trajectories, does not fully 
encompass.

To comprehensively capture the interlinkages 
among these variables, the study formulates the 
following empirical function:

	 f (EMIti, VAAi, Impp)	 (1)

where EMIti, denotes the emissions per capita 
GDP generated by agriculture per capita 
Imp denotes import index

The dataset employed in this study encompass-
es annual data spanning the period 1990-2020, 
with a specific focus on the European Union (EU) 
treated as a single entity. The data were obtained 
from FAOSTAT and include three key variables: 
emissions per capita in the agri-food sector (uti-
lized as a proxy to evaluate the greening of the 
agri-food sector), the GDP per capita share at-
tributed to agriculture (indicative of economic 
growth within the EU), and an index reflecting 
changes in the cost, insurance, and freight (c.i.f.) 
values of imports, all denominated in US dollars. 
These variables were chosen to provide a compre-
hensive understanding of the interplay between 
sustainability, economic performance, and trade 
in the EU’s agri-food systems.

The selection of emissions per capita as a 
proxy for the greening of agri-food systems is 
grounded in the pivotal role of reducing green-
house gas (GHG) emissions in achieving sus-

tainability. The transition to more sustainable 
practices within agri-food systems is intrinsical-
ly linked to mitigating climate change and en-
vironmental degradation. Despite policy efforts 
and technological advancements, the pace of 
this transition has lagged behind expectations, 
particularly in comparison to the broader decline 
in total EU GHG emissions. This discrepancy 
underscores the persistent challenges in decar-
bonizing the agri-food sector.

FAOSTAT data reveal the substantial environ-
mental footprint of agri-food systems, extending 
beyond agricultural production to include pro-
cessing, transportation, and consumption stages. 
These downstream activities significantly con-
tribute to the sector’s overall emissions, high-
lighting the need for a systems-wide approach 
to sustainability. Globally, agri-food systems 
account for approximately 30% of total GHG 
emissions, illustrating their critical role in ad-
dressing climate goals. Within the EU, this sec-
tor remains a focal point for achieving targets 
under the European Green Deal, which aims for 
climate neutrality by 2050.

The inclusion of GDP per capita share gen-
erated by agriculture provides insight into the 
economic contributions of the sector, reflecting 
its role in supporting livelihoods and driving re-
gional development. Simultaneously, the index 
tracking changes in c.i.f. values of imports cap-
tures the trade dimension of the EU’s agri-food 
systems, offering a perspective on how external 
dependencies and global market dynamics inter-
sect with sustainability objectives.

By integrating these variables, the dataset 
serves as a robust foundation for analyzing the 
complex interactions among environmental per-
formance, economic resilience, and trade pat-
terns in the EU’s agri-food systems over three 
decades. This longitudinal perspective enables 
the identification of trends, challenges, and op-
portunities critical for steering the sector toward 
a more sustainable and equitable future.

Analyzing the emissions trajectory and the pro-
portional contribution of agri-food systems reveals 
a consistent downward trend since 2000, though 
progress has been constrained by continued fos-
sil fuel combustion for energy. Simultaneously, 
non-food-related emissions within the sector have 
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surged, increasing by 50% since 2000. In absolute 
terms, per capita emissions attributed to agri-food 
systems decreased from 2.4 t CO2eq/cap in 2000 to 
2.0 t CO2eq/cap by 2020, reflecting a modest but 
meaningful reduction over two decades.

In the European Union (EU), agri-food systems 
remain a significant contributor to the region’s 
carbon footprint, accounting for approximately 
33% of total EU emissions in 2020. These emis-
sions encompass a wide range of activities that 
extend beyond agricultural production. Specifi-
cally, they include emissions generated within the 
farm gate, those arising from land-use changes 
such as deforestation and soil degradation, and 
emissions linked to pre- and post-production pro-
cesses, including food processing, transportation, 
packaging, and waste management.

The comprehensive calculations that inform 
these figures integrate data from multiple repu-
table sources. Key datasets include the United 
Nations Statistical Division (UNSD), the Inter-
national Energy Agency (IEA), and third-party 
analytical tools. Additionally, the PRIMAP-hist 
dataset v2.4 has been instrumental in synthesiz-
ing historical emissions data and providing a 
consistent basis for comparison across time and 
regions (UNSD, 2022; IEA, 2021; Gütschow et 
al., 2021). These datasets collectively enable a 
granular examination of emissions drivers and 
trends, helping policymakers and stakeholders 
identify critical intervention points.

Despite the observed reductions in per cap-
ita emissions, the agri-food sector’s emissions 
trajectory highlights ongoing challenges. The 
increasing prevalence of energy-intensive ag-
ricultural practices and the expansion of non-
food agricultural activities—such as biofuel 
production—have offset some of the gains 
achieved through efficiency improvements and 
sustainable practices. Furthermore, emissions 
from land-use change remain a persistent is-
sue, particularly in regions where agricultural 
expansion continues to drive deforestation and 
habitat loss.

The evolution of the data employed and for 
the reference period 1990-2020 are illustrated in 
the next Figure 1.

As illustrated in the figure the GDP share gen-
erated by agriculture is stationary and slightly 

 

Figure 1 

increasing for a time period of five years a sharp 
increase in 2000 and after that an unstable move-
ment implicitly oscillations are evident without 
a concise growth.

On the other the emissions are increasing with 
a declining trend in the first two decades though 
then the slope of the curve is changing and has 
become sharply decreasing within the last decade. 

Regarding the role of imports, the evolution 
pattern is similar to that of the gdp share though 
the import index is increasing even in the year 
2018 though this is not the case for the GDP per 
capita that is decreasing.

Evidently and based on the above figure the 
emissions intensity is slowing down without a clear 
positive income effect to be validated and also with 
a significant value of the import index rejecting the 

Figure 1 - Evolution of the model variables employed 
(1990-2020).
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hypothesis of ecoefficiency. The graphical illustra-
tion shows that exploring the interlinkages of the 
particular variables could highlight the path for 
ecoefficiency in EU agri-food sector. 

3.2.  Methodology

The BVAR methodology is the framework 
employed for the above-mentioned variables 
(Sarantis & Stewart, 1995; Yan et al., 2022; Tsi-
optsia et al., 2022; Narayan & Popp, 2013). The 
Bayesian Vector Autoregression (BVAR) model 
builds upon the standard Vector Autoregression 
(VAR) framework by incorporating Bayesian 
statistical principles, offering several advantag-
es and operating under key assumptions. BVAR 
assumes that the variables in the system are in-
terdependent, meaning they influence each oth-
er dynamically over time. For example, in this 
study, emissions, economic growth, and trade 
are presumed to have mutual, time-dependent 
relationships. Additionally, the model typical-
ly assumes stationarity, which means that the 
time-series data have statistical properties, such as 
mean and variance, that do not change over time. 
If the data are not stationary, transformations like 
differencing are applied to stabilize these proper-
ties. Another foundational assumption of BVAR 
is the incorporation of prior information, which is 
drawn from theoretical knowledge, past studies, 
or expert opinion. This prior knowledge guides 
the estimation process and is particularly valuable 
when the available data is limited or noisy. Fur-
thermore, BVAR operates within a probabilistic 
framework, explicitly accounting for uncertainty 
in its predictions and parameter estimates. Instead 
of providing single-point forecasts, it offers prob-
abilistic intervals, such as confidence or credible 
intervals, to represent the range of likely out-
comes (Koop, 2003).

BVAR holds several advantages over tradi-
tional VAR models. First, it addresses the is-
sue of overfitting, a common problem in VAR 
models that arises due to the need to estimate a 
large number of parameters, especially when the 
dataset is small. By incorporating Bayesian pri-
ors, BVAR constrains parameter estimates and 
reduces the risk of overfitting, resulting in more 
robust model performance. Second, BVAR often 

yields improved forecasting accuracy because it 
integrates prior knowledge with observed data, 
making it particularly effective when dealing 
with short or noisy datasets. Third, the Bayesian 
approach adeptly handles multicollinearity, a sit-
uation where predictor variables are highly cor-
related, which can destabilize traditional VAR 
models. Finally, BVAR offers greater interpret-
ability and flexibility, allowing researchers to 
transparently quantify uncertainty in predictions 
and adjust the model to incorporate different pri-
or beliefs or assumptions (Karlsson, 2013). 

To make this more accessible to non-special-
ists, BVAR can be thought of as combining the 
strengths of observed data and expert knowl-
edge. If traditional VAR is like navigating with-
out a map and relying solely on what you ob-
serve, BVAR is akin to navigating with both a 
map and the terrain in view. The “map” (prior 
knowledge) complements the “terrain” (data), 
particularly when the data is sparse or noisy, 
resulting in a more informed and reliable deci-
sion-making process.

Prior to the analysis implementation, we con-
ducted a Break Unit root test in order to test the 
rank of variables’ integration (Bloor & Mathe-
son, 2011). The next step in our analysis involved 
the implementation of the BVAR methodology 
in order to detect the interlinkages among green 
practices implementation and economic growth 
in the agri-food sector as well as to unveil the 
role of imports (Nyangchak, 2022). The Bayes-
ian VAR is employed as it is considered a more 
efficient methodology compared to the classical 
VAR model. The mathematical form of a BVAR 
model does not differ though the parameters’ 
estimation and interpretation is different. More 
specifically, the BVAR models incorporate prior 
information about model parameters allowing 
the authors to get more reliable results given that 
this process provides stability in the parameter 
estimation. The prior specification employed in 
our BVAR model is Minnesota while the posteri-
ors’ estimation is based on Maximum likelihood 
function (Sarantis & Stewart, 1995; Yan et al., 
2022; Tsioptsia et al., 2022; Narayan & Popp, 
2013; Nyangchak, 2022). 

Α tractable posterior density function is gen-
erated being similar to the one of the prior with 
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Minnesota algorithm for the parameter under 
review (Yan et al., 2022). The Bayesian Vector 
Autoregression (BVAR) model with the Min-
nesota prior addresses the overfitting and in-
stability challenges of traditional VAR models, 
especially when data is limited. Introduced by 
Litterman (1986), the Minnesota prior shrinks 
coefficients toward a random walk baseline, 
where a variable’s own lags are assumed to have 
more influence than lags of other variables. This 
shrinkage reduces overparameterization and im-
proves forecast accuracy.

The Minnesota prior’s key feature is its hyper-
parameter, controlling the degree of shrinkage. 
Tighter priors pull coefficients closer to zero, 
favoring simplicity unless the data strongly sup-
ports otherwise. Its computational efficiency 
stems from assuming a diagonal prior covariance 
matrix, avoiding complex methods like MCMC.

Studies, including Litterman (1986) and Ban-
bura et al. (2010), highlight its effectiveness in 
forecasting macroeconomic variables and han-
dling high-dimensional VARs. This makes the 
Minnesota prior a powerful tool for balancing 
flexibility and parsimony in systems like envi-
ronmental and economic modeling.

Thus, the hyperparameter value is equal to the 
value of the prior μ while the covariance prior is 
non zero. Furthermore, the matrix of error terms 
is Null, under the condition that the variance-co-
variance matrix is diagonal. The next step in our 
BVAR analysis involves the specification of the 
target parameter, having incorporated a set of 
hyperparameters variables (Yan et al., 2022; Tsi-
optsia et al., 2022; Narayan & Popp, 2013). The 
small value of λ1, is attributed to the fact that the 
prior information is more efficient than the sample 
information. The parameter, λ2 is the regulator of 
the lag significance of the other variables and the 
parameter λ3 reflects the impact of the exogenous 
variable on the endogenous variable. Finally, λ4 
unveils the data scale and variability differences, 
with the lag loss to be either linear when λ4=1, har-
monic or geometric in case λ4>0 (Yan et al., 2022; 
Tsioptsia et al., 2022; Narayan & Popp, 2013).

The last step in our analysis involves the im-
pulse response function estimation (IRF) for each 
variable as well as the Forecast Variance Decom-
position Analysis (FEVD). Impulse Response 

Analysis is a fundamental tool in econometrics 
and time series analysis for examining the dynam-
ic interactions among variables in multivariate 
models. It evaluates how a shock to one variable 
propagates through the system over time, affect-
ing other variables. The methodology has evolved 
significantly, with notable contributions by Koop 
et al. (1996) and Pesaran and Shin (1998), who 
expanded its applicability to nonlinear and linear 
multivariate frameworks, respectively.

Koop et al. (1996) introduced Impulse Re-
sponse Analysis for nonlinear multivariate mod-
els, addressing limitations of traditional linear 
approaches. Their work provided a robust frame-
work for analyzing systems where relationships 
between variables may vary depending on the 
state of the system. For instance, in macroeco-
nomic models, the effects of policy changes might 
differ during periods of economic expansion ver-
sus recession. Their methodology captures these 
complexities, making it particularly useful for 
analyzing real-world economic dynamics where 
nonlinearity is prevalent.

Pesaran and Shin (1998) advanced the field 
by developing Generalized Impulse Response 
Analysis (GIRA) within linear multivariate 
models. Unlike traditional approaches that rely 
on orthogonalization via Cholesky decompo-
sition—which imposes a specific ordering of 
variables—GIRA provides a flexible and order-
ing-invariant methodology. This innovation is 
particularly valuable in settings where the causal 
ordering of variables is ambiguous or contro-
versial, such as in macroeconomic studies ex-
amining interactions between monetary policy, 
inflation, and output. By allowing shocks to be 
modeled in a less restrictive manner, GIRA facil-
itates more realistic and interpretable analyses. 
The practical implications of these developments 
are extensive. In policy analysis, IRF enables 
researchers and policymakers to simulate the 
effects of interventions, such as fiscal stimulus 
or monetary tightening, on key economic indica-
tors over time. In financial markets, it aids in un-
derstanding how shocks to interest rates or stock 
prices influence interconnected markets. More-
over, the adaptability of these methodologies to 
both linear and nonlinear systems has broadened 
their applicability across diverse fields, includ-
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ing environmental modeling, health economics, 
and industrial organization (Koop et al., 1996; 
Pesaran et al., 1998).

In a similar vein, variance decomposition or in 
other words ‘forecast error variance decomposi-
tion is a specific tool that may interpret adequate-
ly and in a narrow way the relations between 
variables described by the model estimated. This 
methodology will amplify the impulse Response 
analysis since further quantify the contribution 
rates of all variables to the impact on the depen-
dent variable (Ivanov & Kilian, 2005; Brahmas-
rene et al., 2014; Jakada et al., 2022; Lanne & 
Nyberg, 2016; Pesaran & Shin, 1998). 

The model evaluation was based on the forecast 
accuracy performance for the classic VAR and 
BVAR specifications respectively with the assis-
tance of the following indices namely the Root 
Mean Square Error (RMSE) and the Mean Ab-
solute Error (MAE). Their calculation was based 
on the following formula (Pesaran & Shin, 1998):
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The forecast accuracy measures were selected 
on the basis of sensitivity extending to the devi-
ations from the true values. 

4.  Results

The first step in our analysis, namely the break 
unit root test employed has provided the follow-
ing results as synopsized in Table 1.

Based on the aforementioned findings for the 
EU all the respective variables are found to be 
I(1) with the years 1999 and 2002 respectively 
to be identified as structural breaks. The Kyoto 
protocol (1996-1999 signing period) as well as 
the different financial crises may well interpret 
the breakpoints identified.

The Impulse Response analysis was also em-
ployed in order to detect and quantify the inter-
linkages among the variables employed. Based on 
our findings the response of agricultural income 
due to an innovation to the emissions is decreas-
ing with a steady declining rate the slope becomes 

steeper after the five years while a balance and 
a constant route is evident within the last few 
years. In addition, the response of emissions to an 
innovation in agricultural income is initially in-
creasing at an increasing rate while this change in 
the mid-term since the curvature of the response 
changes and from curved becomes cave. The re-
sults are provided in Figure 2.

The figures constructed were based on the 
Bayesian methodology Gibbs sampling while 
1000 iterations were implemented to acquire the 
results (Solazzo & Pierangeli, 2016; Kasztelan 
et al., 2019; Kovalenko et al., 2021).

Based on the Impulse Response Analysis (as 
illustrated in Figure 3), an innovation in emis-
sions seem to steadily decrease the emissions 
rate for a 20-period studied. On the other hand, 
an innovation in imports and GDP share seems 
to in total decrease the emission for the time 
period studied though in a limited way with 
imports to be more effective than GDP share. 
Regarding the response of imports on the in-
novation of the emissions is initially increasing 
with a decreasing rate and then decreasing after 
a 1-period time. 

The GDP increases with a declining trend for 
a period of twenty years while the emissions in-
crease with a declining trend in the first decade 
though then the slope of the curve is changing 
and becomes increasing.

Based on the above results it becomes evident 
that natural processes, such as livestock manure, 
enteric fermentation, and land use, contribute 

Table 1 - ADF break unit root results.

Variables ADF Break Unit Root Break date
CEM -3.33 (0.778) 1999
ΔCEM -5.50*** (0.000) 2001
GDP -3.81 (0.48) 2002
ΔGDP -4.82*** (0.0) 2003
IMP -4.35* (0.06) 2002
Δ IMP -5.03*** (000) 2000

*** reject of unit root test for 1% level of significance 
with critical values -4.94, -4.44, -4.19 for 1,5 and 1% 
level of significance CEM denotes carbon emission 
per capita for agrifood system for EU, GDP denoted 
GDP per capita, IMP denotes the import index for EU 
and ΔCEM ΔGDP, ΔIMP denotes the first differences 
of the variables respectively
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greatly to methane emissions, making agriculture 
a major part of the agri-food sector hard to abate. 
What is more, fertilizers hurt the climate through 
the release of nitrous oxide. There are however 
solutions to reduce emissions from agrifood sys-
tems, such as the introduction of environmentally 
friendly and efficiency improvement through au-
tomation. The particular solutions could enable a 
reduction in the emission intensity (that is the lev-
el of GHGs released per kg of product) of specific 
food commodities. EU production of livestock 
products, have decreased in emission intensity in 
recent decades. According to calculations by the 
European Topic Centre on Climate Change Mit-
igation, policies and measures currently in place 
are expected to cause only a 1.5 % reduction in the 
agricultural sector’s emissions between now and 
2040. This result implies that more steps should 
be taken to enhance the efficient limitation of en-
vironmental degradation. On the other hand, the 

response of imports on innovation of emissions 
tends to increase linearly the index related to the 
imports while innovations on GDP decrease the 
imports throughout the period studied. Last but 
not least the response of GDP share per capita 
generated by agriculture in case of innovations 
in emissions leads to an increase in GDP with a 
declining rate while stability becomes evident 
within ten years.

This means that the greening of the agrifood 
sector cannot provide a steadily increasing 
growth and therefore more steps need to be tak-
en in order ecoefficiency to become an achiev-
able objective in the EU.

When the impulse response analysis involves 
twenty periods an innovation in imports causes 
an increase in emissions while an innovation in 
GDP share generated by agriculture causes a de-
crease in emissions. The significant change be-
comes more evident after the 12th period. What 

Figure 2 - Impulse – response analysis of the model variables (10-period).
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is more the innovation in emissions has a slight 
impact on GDP and the same variable is slightly 
decreasing for innovation in imports. 

The forecast error variance decomposition 
analysis reveals more insightful results after 
20 periods compared to 10. Specifically, for 
emissions volatility, only 10% is attributable to 
GDP volatility, while 4.2% can be explained by 
volatility in imports. These findings highlight 
the limited interconnectivity between the vari-
ables analyzed, suggesting that the relationships 
among emissions, GDP, and imports are not 
strongly interdependent within the framework 
employed. For a 10-period reference, the ex-
planatory power of the variables is even more 
constrained, providing less meaningful insights 
into their dynamics. Importantly, these patterns 
remain consistent across other variables in the 
study, indicating that the observed trends are ro-
bust but that further investigation is needed to 

identify additional factors influencing emissions 
and their interrelationship with economic growth 
and trade. This underscores the need to explore 
alternative causal pathways to effectively priori-
tize environmental sustainability in the agri-food 
sector while mitigating potential adverse income 
effects. Another notable observation concerns 
the limited impact of imports on both income 
and environmental outcomes. This suggests that 
while trade policies and imports play a role, their 
influence is not as pronounced as other factors. 
These findings highlight the need for a multifac-
eted approach to address environmental issues 
in the agri-food sector, emphasizing strategies 
that integrate sustainability goals without com-
promising economic resilience. Further research 
should aim to uncover additional drivers and 
refine the policy framework to enhance the sec-
tor’s capacity for sustainable growth.

Another step involves Sims-ZHA analysis 

Figure 3 - Impulse – response analysis of the model variables (20-period).
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Variance decomposition of EMISCAP
EMISCAP GDPcap^2 GDPCAP IMP

 1 100.0000 0.000000 0.000000 0.000000
 2 99.89138 0.044249 0.039874 0.024496
 3 99.54465 0.190690 0.176762 0.087895
 4 98.97621 0.435923 0.410263 0.177600
 5 98.21348 0.772122 0.734676 0.279725
 6 97.28471 1.190762 1.142862 0.381661
 7 96.21727 1.683418 1.627002 0.472306
 8 95.03644 2.242190 2.178953 0.542421
 9 93.76440 2.859942 2.790446 0.585209
 10 92.41928 3.530395 3.453117 0.597210
 11 91.01400 4.248007 4.158355 0.579633
 12 89.55533 5.007555 4.896887 0.540223
 13 88.04295 5.803291 5.657999 0.495764
 14 86.46903 6.627492 6.428330 0.475143
 15 84.81894 7.468288 7.190241 0.522534
 16 83.07365 8.306819 7.920033 0.699503
 17 81.21525 9.114289 8.586779 1.083678
 18 79.23585 9.850376 9.153248 1.760528
 19 77.14858 10.46541 9.580789 2.805225
 20 74.99640 10.90863 9.839142 4.255823

Variance decomposition of GDP1
EMISCAP GDP1 GDPCAP01  IMP

 1 0.000000 100.0000 0.000000 0.000000
 2 0.153244 99.84115 0.002055 0.003556
 3 0.590360 99.35067 0.023941 0.035028
 4 1.257957 98.54816 0.082998 0.110881
 5 2.088408 97.46837 0.198456 0.244765
 6 3.012193 96.14865 0.391098 0.448059
 7 3.961928 94.62539 0.682906 0.729778
 8 4.874824 92.93233 1.096516 1.096329
 9 5.694467 91.09992 1.654450 1.551167
 10 6.372263 89.15551 2.377947 2.094284
 11 6.868835 87.12451 3.285175 2.721483
 12 7.155578 85.03225 4.388698 3.423478
 13 7.216458 82.90641 5.692171 4.184963
 14 7.049918 80.77950 7.186608 4.983977
 15 6.670398 78.69060 8.846973 5.792024
 16 6.108683 76.68547 10.63035 6.575495
 17 5.410130 74.81400 12.47718 7.298694
 18 4.630177 73.12509 14.31644 7.928298
 19 3.827417 71.65961 16.07464 8.438342
 20 3.055633 70.44365 17.68643 8.814286

Variance decomposition of GDPCAP01
EMISCAP GDP1 GDPCAP01  IMP

 1 0.000000 0.000000 100.0000 0.000000
 2 0.154966 0.004576 99.83738 0.003075
 3 0.595799 0.038281 99.33147 0.034455
 4 1.265362 0.121255 98.50143 0.111957
 5 2.091764 0.274871 97.38292 0.250447
 6 3.001357 0.520989 96.01495 0.462707
 7 3.923122 0.881538 94.43593 0.759410
 8 4.791541 1.377864 92.68173 1.148867
 9 5.548732 2.029866 90.78475 1.636656
 10 6.146201 2.854688 88.77408 2.225034
 11 6.546498 3.864792 86.67666 2.912050
 12 6.724978 5.065280 84.51935 3.690395
 13 6.671703 6.450544 82.33160 4.546150
 14 6.393230 8.000724 80.14825 5.457796
 15 5.913635 9.678952 78.01132 6.396094
 16 5.273828 11.43080 75.96988 7.325488
 17 4.528206 13.18741 74.07690 8.207485
 18 3.738328 14.87284 72.38304 9.005789
 19 2.964463 16.41468 70.92878 9.692072
 20 2.257090 17.75502 69.73728 10.25061

Variance decomposition of IMP
EMISCAP GDP1 GDPCAP01 IMP

 1 0.000000 0.000000 0.000000 100.0000
 2 0.205939 0.000505 0.001105 99.79245
 3 0.836548 0.000367 0.001147 99.16194
 4 1.874776 0.003656 0.001256 98.12031
 5 3.277107 0.019844 0.007223 96.69583
 6 4.983297 0.063195 0.028978 94.92453
 7 6.921659 0.151912 0.079737 92.84669
 8 9.013041 0.307231 0.175216 90.50451
 9 11.17411 0.552406 0.332871 87.94061
 10 13.32003 0.911452 0.571057 85.19746
 11 15.36674 1.407475 0.908003 82.31779
 12 17.23319 2.060448 1.360452 79.34591
 13 18.84414 2.884310 1.941873 76.32968
 14 20.13379 3.883472 2.660217 73.32252
 15 21.05074 5.049137 3.515411 70.38471
 16 21.56393 6.356276 4.497078 67.58271
 17 21.66845 7.762474 5.583229 64.98584
 18 21.38949 9.209932 6.740825 62.65976
 19 20.78219 10.63122 7.928754 60.65784
 20 19.92612 11.95813 9.103022 59.01272

Table 2 - Generalized FEVD Analysis (Lanne and Nyberg, 2016). 
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through which we try to conclude how policy 
measures adoption on climate change would af-
fect the behavior of the other variables. Based on 
policy measures taken for climate change mitiga-
tion we may conclude that the emissions become 
limited, the GDP share generated by agriculture is 
stabilized while the imports are increasing with a 
less steep upward trend. This result is significant 
since the proper climate change mitigation mea-

sures may lead to ecoefficiency. All the results are 
illustrated in next Figure 4.

The last but not least step in our analysis in-
volves a forecast analysis (Figure 5). More spe-
cifically, the averages, and the actual values over 
the periods, provides a quick visual comparison 
of the model variables but in the present work 
we illustrate the result for the emissions generat-
ed by the agri-food sector in EU.

Figure 4 - Sims-Zhu policy analysis results of the model variables.

Figure 5 - Real and av-
erage values of the emis-
sions generated by the 
estimated model.
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The emission estimated based on the model 
lies within a band of 5% oscillation indicating 
that the model employed is accurate. The above 
findings are further validated with the indices 
provided in the table below including RMSE, 
MAE, MAPE and Theil validate model accu-
racy indices. 

The following section provides a detailed in-
terpretation of the derived results and outlines 
their policy implications. This analysis aims to 
translate the findings into actionable insights, of-
fering a foundation for informed decision-mak-
ing to address key challenges and opportunities 
identified in the study.

5.  Discussion - Conclusions

Green and sustainable practices in the agri-food 
sector have become increasingly prevalent in 
modern societies, particularly within the Europe-
an Union (EU). This trend is strongly supported 
by policies such as the Farm-to-Fork Strategy, 
which aligns with the Sustainable Development 
Goals (SDGs) to provide nutritious and affordable 
food for a growing global population. The EU’s 
strategy specifically aims to create fair, healthy, 
and environmentally-friendly food systems. The 
EU’s strategy aims to establish fair, healthy, and 
environmentally sustainable food systems. A cor-
nerstone of this approach is the European Green 
Deal, which sets an ambitious goal of making 
Europe carbon neutral. This wide-ranging policy 
framework encompasses all sectors of the econo-
my, with agriculture playing a pivotal role. Within 
the Green Deal, the Farm-to-Fork Strategy focus-
es on building sustainable food systems that pro-
tect human health, support society, and safeguard 
the environment. One of the Green Deal’s key 
targets is to reduce greenhouse gas (GHG) emis-
sions by 50–55% compared to 1990 levels, under-

scoring the EU’s strong commitment to combat-
ing climate change and advancing sustainability 
throughout the agri-food sector (Belaud et al., 
2019; Annosi et al., 2021; Notenbaert et al., 2020; 
Fanzo et al., 2020; FAOSTAT, 2018; Andrieu & 
Kebede, 2020). To achieve the ambitious targets 
set by the European Green Deal and the Farm-
to-Fork Strategy, several key actions are essential 
within the agri-food sector. To minimize environ-
mental and health impacts, a 50% reduction in the 
use and risk of chemical pesticides is essential. 
This requires promoting alternative pest manage-
ment strategies and encouraging the adoption of 
safer, more sustainable solutions.

Simultaneously, nutrient losses—especially 
nitrogen and phosphorus—must be reduced by 
at least 50% to prevent water pollution and eu-
trophication, without compromising soil fertility. 
Achieving this will depend on improved nutrient 
management and the implementation of precision 
agriculture techniques.

Fertilizer use should also be decreased by at 
least 20% to curb environmental damage, par-
ticularly greenhouse gas emissions and soil deg-
radation. This calls for optimized fertilization 
practices, including the use of organic and en-
hanced-efficiency fertilizers.

Furthermore, the sale of antimicrobials for farm 
animals and aquaculture must be halved to com-
bat the escalating threat of antimicrobial resis-
tance. This underscores the need for better animal 
husbandry, stronger biosecurity measures, and the 
development of effective alternative treatments. 
Expanding the area of farmland under organic 
farming to 25% by 2030 is crucial for promot-
ing biodiversity, improving soil health, and re-
ducing chemical inputs, thereby contributing to 
more sustainable food systems. These measures 
are vital for meeting the EU’s sustainability 
goals, ensuring that the agri-food sector con-

Table 3 - Forecast Model’s evaluation statistic results for all the variables.

Variable RMSE MAE MAPE Theil
EMISCAP 0.042251 0.034328 1.190075 0.007236
GDP1 1.530497 1.228946 1.187841 0.007351
GDPCAP01 0.075314 0.060488 0.594720 0.003694
IMP 0.093340 0.072838 1.766562 0.011057
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tributes to a healthier environment, more resil-
ient food systems, and a reduced overall carbon 
footprint for agriculture (van Bers et al., 2019; 
Boix-Fayos & de Vente, 2023). 

This study employs the Bayesian Vector Au-
toregression (BVAR) methodology to investi-
gate the interlinkages between emissions per 
capita from the agri-food sector, used as a proxy 
for greening, and GDP per capita. The findings 
reveal that current efforts to achieve greening in 
the agri-food sector remain largely ineffective. 
While carbon emissions have decreased, these 
reductions are not accompanied by proportional 
improvements in economic efficiency. The EU’s 
“Farm-to-Fork” strategy, a pivotal component 
of the Sustainable Development Goals (SDGs), 
seeks to deliver nutritious and affordable food 
while fostering sustainability. However, the 
progress achieved thus far is insufficient to meet 
these ambitious objectives.

The limitations of current greening efforts 
highlight the urgent need for policies that lever-
age the potential of digitalization and innova-
tion. Precision mechanization, automation, and 
advanced data-driven decision-making systems 
present promising solutions to the sector’s envi-
ronmental and operational challenges. Real-time 
data acquisition and instantaneous information 
sharing can significantly enhance traceability, 
promoting greater sustainability and transpar-
ency across the agri-food supply chain. This is 
particularly important as consumers are increas-
ingly concerned about the structure and integrity 
of these supply chains, especially in response 
to recurring food safety scandals and emerging 
risks over recent decades.

Advancing sustainable food systems requires a 
multifaceted approach that integrates technologi-
cal innovation, consumer education, and coordi-
nated efforts across stakeholders. Policymakers 
must create enabling environments for the adop-
tion of digital tools, such as precision agriculture 
and blockchain, to improve resource efficiency 
and supply chain transparency. Education and 
training initiatives organized by cooperatives, re-
search institutions, policymakers, and academics 
are critical for equipping farmers and other de-
cision-makers with the knowledge needed to im-
plement sustainable agricultural practices. Reg-

ulatory frameworks should also be strengthened 
to ensure that greening efforts align with broader 
economic and environmental goals.

The analysis of the impact of imports on car-
bon emissions reveals only a limited effect. Using 
Impulse Response Function (IRF) and Forecast 
Error Variance Decomposition (FEVD) methods, 
the study finds that although an increase in im-
ports slightly elevates carbon emissions and re-
duces the agri-food sector’s contribution to GDP, 
these effects are relatively minor. The FEVD 
analysis indicates that only 8.8% of emissions 
volatility can be attributed to changes in imports. 
This limited influence can be attributed, in part, 
to initiatives like the Carbon Border Adjustment 
Mechanism (CBAM), introduced under the EU 
Green Deal. CBAM imposes a carbon price on 
imports from countries with less stringent envi-
ronmental standards, thereby reducing carbon 
leakage. However, additional trade restrictions 
within the agri-food sector could reduce imports 
further, potentially leading to significant eco-
nomic repercussions. These include decreased 
production, reduced exports, higher food prices, 
increased food insecurity, lower farmer incomes, 
and potential GDP declines.

The results of this study align with and ex-
pand upon findings from prior research. Abbate 
et al. (2023) emphasize the importance of dig-
ital and sustainable transitions in the agri-food 
sector [Technological Forecasting and Social 
Change]. Similarly, Dora et al. (2021) propose 
a system-wide interdisciplinary framework for 
mitigating food loss and waste in supply chains 
[Industrial Marketing Management]. Belaud et 
al. (2019) explore the role of big data in sustain-
ability management for agri-food supply chains 
[Computers in Industry]. Furthermore, Annosi et 
al. (2021) discuss the integration of digitaliza-
tion to prevent food waste [Industrial Marketing 
Management].

In alignment with Ojo et al. (2018), this study 
underscores the transformative potential of In-
dustry 4.0 technologies in achieving sustainable 
food supply chains. Additionally, Fanzo et al. 
(2020) highlight the role of decision-support 
tools, such as the Food Systems Dashboard, in 
informing better policy decisions.

The limited impact of imports on emissions 
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is consistent with the findings of FAOSTAT 
(2018) regarding trade and sustainable agri-food 
systems. Furthermore, the challenges posed by 
policy lock-ins, as noted by Kuokkanen et al. 
(2017), and the need for innovative pathways, as 
discussed by Boix-Fayos and de Vente (2023), 
underscore the urgency of adopting transfor-
mative measures within the EU’s Green Deal 
framework.

Based on the above, this study highlights the 
urgent need for transformative policies and in-
novative solutions to align the greening of the 
agri-food sector with economic growth. Poli-
cymakers must balance trade policies with sus-
tainability goals, ensuring that mechanisms such 
as CBAM are complemented by investments in 
technology, education, and infrastructure. Only 
through coordinated actions and robust policy 
frameworks can the EU achieve the dual objec-
tives of environmental sustainability and eco-
nomic resilience within the agri-food sector.

The Farm-to-Fork strategy, a cornerstone of 
the Sustainable Development Goals (SDGs), 
aims to provide nutritious and affordable food 
on a global scale while promoting sustainabili-
ty. Implemented across various stages of the EU 
agri-food industry, the strategy has made some 
progress, but achieving eco-efficiency in this 
sector demands additional efforts. This study’s 
examination of the long-term interlinkages with-
in the sector highlights the evolving nature of 
these relationships as the Green Deal advances 
and new data becomes available.

A key limitation of this study is its reliance on 
time series analysis that treats the EU as a single 
entity. While this approach provides valuable in-
sights, effective policy solutions may require a 
more granular analysis at the member state level. 
Future research could address this by employ-
ing panel data analysis techniques, such as Dy-
namic Ordinary Least Squares (DOLS) or Fully 
Modified OLS, to gain a deeper understanding 
of the economic and environmental efficiency 
of policy measures. These methods could help 
identify the specific steps necessary to improve 
outcomes and ensure alignment with the targets 
set by the SDGs and the Green Deal.

Additionally, the role of imports in shaping 
the agri-food sector warrants further investiga-

tion. As the Green Deal progresses and import 
restrictions evolve, it will be crucial to under-
stand their broader implications. In particular, 
future research should focus on the origins of 
imports from countries that do not adhere to 
emerging environmental standards. Expanding 
the dataset to include more detailed observa-
tions would allow researchers to capture the 
dynamics of the global agri-food market as it 
adapts to these changes.

This ongoing analysis will be instrumental in 
refining policies and practices to address the dual 
challenges of climate change and the transition 
to sustainable food systems. A more nuanced un-
derstanding of these interdependencies is critical 
for the formulation of integrated strategies that 
align environmental sustainability with econom-
ic resilience. Such an approach is instrumental in 
advancing the aims of the Farm-to-Fork Strate-
gy, the Sustainable Development Goals (SDGs), 
and the European Green Deal.
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